Тиамин
Тиамин | |
---|---|
| |
Общие | |
Систематическое наименование |
3-[(4-амино-2-метил-5-пиримидил) метил]-5-(2-гидроксиэтил)-4-метил-тиазол |
Хим. формула | C12H17N4OS⁺ |
Рац. формула | C12H17N4OS |
Физические свойства | |
Молярная масса | 265,4 г/моль |
Термические свойства | |
Температура | |
• плавления | 248—250 °C |
Классификация | |
Рег. номер CAS | 59-43-8 |
PubChem | 1130 |
SMILES | |
InChI | |
ChEBI | 18385 |
ChemSpider | 1098 |
Приведены данные для стандартных условий (25 °C, 100 кПа), если не указано иное. | |
Медиафайлы на Викискладе |
Тиамин | |
---|---|
Химическое соединение | |
Брутто-формула | C12H17N4OS⁺ |
CAS | 70-16-6 |
PubChem | 1130 |
DrugBank | DB00152 |
Состав | |
Классификация | |
АТХ | A11DA, A11DA01 |
Другие названия | |
Аневрин, Витамин B1, тиамина бромид, тиамина гидрохлорид, тиамина хлорид, нефосфорилированный тиамин | |
Медиафайлы на Викискладе |
Тиами́н (витамин B1; старое название — аневрин) — органическое гетероциклическое соединение, водорастворимый витамин, отвечающий формуле C12H17N4OS. Бесцветное кристаллическое вещество, хорошо растворимое в воде, нерастворимое в спирте (есть и жирорастворимый аналог витамина B1 (тиамина) — бенфотиамин). Водные растворы тиамина в кислой среде выдерживают нагревание до высоких температур без снижения биологической активности. В нейтральной и особенно в щелочной среде витамин B1, наоборот, быстро разрушается при нагревании.[1] На сегодняшний день известно четыре формы тиамина в организме человека: нефосфорилированный тиамин, тиаминмонофосфат, тиаминдифосфат (он же тиаминпирофосфат) и тиаминтрифосфат. Тиаминдифосфат является самой распространенной формой тиамина.
Тиамин играет важную роль в процессах метаболизма углеводов, жиров и белков. Тело человека может хранить до 30 мг тиамина в тканях. Тиамин в основном сосредоточен в скелетных мышцах. Другие органы, в которых он найден, — это мозг, сердце, печень и почки. Вещество необходимо для нормального роста и развития и помогает поддерживать надлежащую работу сердца, нервной и пищеварительной систем. Тиамин, являясь водорастворимым соединением, не запасается в организме и не обладает отравляющими свойствами. Недостаток тиамина, возникающий при плохом питании и чрезмерном употреблении алкоголя, приводит к синдрому Вернике — Корсакова и авитаминозу. Эти расстройства характеризуются изменениями в нервной системе, которые могут быть восстановлены при высоком уровне потребления тиамина и соответствующей диете.
История
[править | править код]Христиан Эйкман предположил существование паралитического яда в эндосперме риса и наличие полезных для организма веществ в рисовых отрубях, излечивающих болезнь бери-бери. За исследования, которые привели к открытию витаминов, Эйкман получил в 1929 году Нобелевскую премию в области медицины. В 1911 году Казимир Функ получил биологически активное вещество из рисовых отрубей, которое назвал витамином, так как его молекула содержала азот.
В чистом виде впервые выделен Б. Янсеном в 1926 году.
Физико-химические свойства
[править | править код]Тиамин хорошо растворим в воде. В кислых водных растворах весьма устойчив к нагреванию, в щелочных — быстро разрушается.[источник не указан 3139 дней]
Молекула содержит два соединённых метиленовой связью кольца: пиримидиновое и тиазоловое.
Метаболическая роль и обмен
[править | править код]В природе тиамин синтезируется растениями и многими микроорганизмами. Большинство животных и человек не могут синтезировать тиамин и получают его вместе с пищей. В тиамине нуждаются все животные за исключением жвачных, так как бактерии в их кишечнике синтезируют достаточное количество витамина.
Всасываясь из кишечника, тиамин фосфорилируется и превращается в тиаминпирофосфат.
Тиаминпирофосфат (ТПФ, англ. TPP) — активная форма тиамина — является коферментом пируватдекарбоксилазного и α-кетоглутаратдегидрогеназного комплексов, а также транскетолазы. Первые два фермента участвуют в метаболизме углеводов, транскетолаза функционирует в пентозофосфатном пути, участвуя в переносе гликоальдегидного радикала между кето- и альдосахарами. ТПФ синтезируется ферментом тиаминпирофосфокиназой, главным образом в печени и в ткани мозга. Реакция требует присутствия свободного тиамина, ионов Mg2+ и АТФ. Также ТПФ выступает коферментом дегидрогеназы γ-оксиглутаровой кислоты и пируватдекарбоксилазы клеток дрожжей.
Другими производными тиамина являются:
- Тиаминтрифосфат, обнаружен у бактерий, грибов, растений и животных[2], у E. coli играет роль сигнальной молекулы при ответе на аминокислотное голодание[3].
- Аденозинтиаминдифосфат — накапливается у E. coli в результате углеродного голодания[4].
- Аденозинтиаминтрифосфат — присутствует в небольших количествах в печени позвоночных, функция его неизвестна[5].
Гиповитаминоз
[править | править код]Системный недостаток тиамина является причиной развития ряда тяжёлых расстройств, ведущее место в которых занимают поражения нервной системы. Комплекс последствий недостаточности тиамина известен под названием болезни бери-бери и синдрома Корсакова-Вернике.
Как правило, развитие дефицита тиамина бывает связано с нарушениями в питании. Это может быть следствием недостаточного поступления тиамина с пищей либо происходить в результате избыточного употребления продуктов, содержащих значительные количества антитиаминовых факторов. Так, свежие рыба и морепродукты содержат значительные количества тиаминазы, разрушающей витамин; чай и кофе ингибируют всасывание тиамина.
При бери-бери наблюдаются слабость, потеря веса, атрофия мышц, невриты, нарушения умственной деятельности, расстройства со стороны пищеварительной и сердечно-сосудистой системы, развитие парезов и параличей.
Одной из форм бери-бери, встречающейся преимущественно в развитых странах, является Синдром Гайе — Вернике (иначе — синдром Вернике — Корсакова), развивающийся при алкоголизме.
Синдром Вернике — Корсакова является потенциально фатальным неврологическим расстройством, что наиболее часто встречается у алкоголиков. Алкоголь напрямую влияет на механизмы фосфорилирования/дефосфорилирования тиамина, что приводит к сильному уменьшению концентрации активной формы тиамина.
Энцефалопатия Вернике и Корсаковский психоз — два отдельных диагноза. Этот синдром вызывает повреждения головного мозга в третьем и четвёртом желудочке, таламусе и мамиллярных органах. Развитие болезни приводит к психозу и необратимому повреждению в областях мозга, связанных с памятью. Симптомы энцефалопатии Корсакова-Вернике включают:
- путаницу и потерю умственной деятельности, что может прогрессировать до комы;
- потерю мышечной координации (атаксию);
- аномальные движения глаз, двоение в глазах;
- неспособность сформировать новые воспоминания;
- потерю памяти.
Лечение энцефалопатии Вернике включает внутривенное введение тиамина в течение 3—5 дней с последующим приемом высокой потенции B-витаминного комплекса, пока улучшение продолжается.
При нарушении обмена тиамина в первую очередь возникает расстройство окислительного декарбоксилирования α-кетокислот и частично блокируется метаболизм углеводов. У больных бери-бери происходит накопление недоокисленных продуктов обмена пирувата, которые оказывают токсическое действие на ЦНС и обусловливают развитие метаболического ацидоза. Вследствие развития энергодефицита снижается эффективность работы ионных градиентных насосов, в том числе клеток нервной и мышечной ткани. Нарушается синтез жирных кислот и трансформация углеводов в жиры. Усиление катаболизма белков ведёт к развитию мышечной атрофии, у детей — к задержке физического развития. Вследствие затруднения образования из пировиноградной кислоты ацетил КоА страдает процесс ацетилирования холина.
Экспериментальные исследования по депривации тиамина у мышей приводили к энергодефициту в печени, увеличению уровня лактата, уменьшению транскрипции генов, связанных с метаболизмом липидов и глюкозы[6].
Гипервитаминоз
[править | править код]Гипервитаминоз для тиамина встречается крайне редко. Парентеральное введение витамина B1 в большой дозе может вызвать анафилактический шок вследствие способности тиамина вызывать неспецифическую дегрануляцию тучных клеток. Тиамин в фармакологических дозах (от 30 мг) в таблетках угнетает холинэстеразу и гистаминазу[источник не указан 2169 дней], вызывая соответствующие синдромы. Также вызывает дефицит меди, витаминов B2 и B3 в крови[источник не указан 2169 дней]. Леводопа постепенно вызывает гипервитаминоз B1[источник не указан 2169 дней]. При фотодерматозах и СКВ регистрируется всегда повышенный фон B1 и дефицит B6, особенно после загара.
Распространение в пищевых продуктах
[править | править код]Основные количества тиамина человек получает с растительной пищей. Богаты тиамином такая растительная еда, как пшеничный хлеб из муки грубого помола, соя, фасоль, горох, шпинат. Меньше содержание тиамина в картофеле, моркови, капусте. Из животной пищи содержанием тиамина выделяются печень, почки, мозг, свинина, говядина, также он содержится в дрожжах. В молоке его содержится около 0,5 мг/кг.[7] Витамин B1 синтезируется некоторыми видами бактерий, составляющих микрофлору толстого кишечника.
Нормы потребления тиамина (витамина B1)
[править | править код]Пол | Возраст | Суточная норма тиамина (витамин B1)[8], мг/день |
---|---|---|
Младенцы | до 6 месяцев | 0,2 |
Младенцы | 7 — 12 месяцев | 0,3 |
Дети | 1 — 3 года | 0,5 |
Дети | 4 — 8 лет | 0,6 |
Дети | 9 — 13 лет | 0,9 |
Мужчины | 14 лет и старше | 1,2 |
Женщины | 14-18 лет | 1,0 |
Женщины | 19 лет и старше | 1,1 |
Примечания
[править | править код]- ↑ Б.Ф.Коровкин. Биологическая химия. — 1998.
- ↑ Makarchikov A. F., Lakaye B., Gulyai I. E., Czerniecki J., Coumans B., Wins P., Grisar T and Bettendorff L. Thiamine triphosphate and thiamine triphosphatase activities: from bacteria to mammals (англ.) // Cell. Mol. Life Sci : journal. — 2003. — Vol. 60. — P. 1477—1488. — doi:10.1007/s00018-003-3098-4.
- ↑ Lakaye B., Wirtzfeld B., Wins P., Grisar T and Bettendorff L. Thiamine triphosphate, a new signal required for optimal growth of Escherichia coli during amino acid starvation (англ.) // J. Biol. Chem. : journal. — 2004. — Vol. 279. — P. 17142—17147. — doi:10.1074/jbc.M313569200. — PMID 14769791.
- ↑ Bettendorff L., Wirtzfeld B., Makarchikov A. F., Mazzucchelli G., Frédérich M., Gigliobianco T., Gangolf M., De Pauw E., Angenot L and Wins P. Discovery of a natural thiamine adenine nucleotide (неопр.) // Nature Chem. Biol.. — 2007. — Т. 3. — С. 211—212. — doi:10.1038/nchembio867.
- ↑ Frédérich M., Delvaux D., Gigliobianco T., Gangolf M., Dive G., Mazzucchelli G., Elias B., De Pauw E., Angenot L., Wins P. and Bettendorff L. Thiaminylated adenine nucleotides — chemical synthesis, structural characterization and natural occurrence FEBS J. (англ.) : journal. — 2009. — Vol. 276. — P. 3256—3268. — doi:10.1111/j.1742-4658.2009.07040.x.
- ↑ Alain de J. Hernandez-Vazquez, Josue Andres Garcia-Sanchez, Elizabeth Moreno-Arriola, Ana Salvador-Adriano, Daniel Ortega-Cuellar. Thiamine Deprivation Produces a Liver ATP Deficit and Metabolic and Genomic Effects in Mice: Findings Are Parallel to Those of Biotin Deficiency and Have Implications for Energy Disorders // Journal of Nutrigenetics and Nutrigenomics. — 2017-02-18. — Т. 9, вып. 5—6. — С. 287—299. — ISSN 1661-6758. — doi:10.1159/000456663. Архивировано 24 марта 2017 года.
- ↑ Источники витамина В1. В каких продуктах содержится витамин B1 . Дата обращения: 12 декабря 2010. Архивировано из оригинала 24 ноября 2010 года.
- ↑ Thiamin. Дата обращения: 3 марта 2013. Архивировано 26 марта 2013 года.
Литература
[править | править код]- Нормы физиологических потребностей в энергии и пищевых веществах для различных групп населения Российской Федерации : методические рекомендации : МР 2.3.1.2432-08 : [арх. 19 февраля 2016] / Утв. рук. Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека, Гл. гос. сан. врачом РФ Г. Г. Онищенко. — 2008. — 18 декабря. — 39 с. — (3.2.1. Рациональное питание).