Вневписанная окружность

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
Вписанная (с центром I) и 3 вневписанные (с центрами в J) окружности в

Вневпи́санная окружность треугольника — окружность, касающаяся одной из сторон треугольника и продолжений двух других его сторон. У любого треугольника существует три вневписанных окружности (в отличие от единственной вписанной).

Существование и единственность вневписанной окружности обусловлены тем, что биссектрисы двух внешних углов треугольника и биссектриса внутреннего угла, не смежного с этими двумя, пересекаются в одной точке, которая и является центром такой окружности.

Свойства[править | править код]

Здесь используются обозначения:  — радиусы вневписанных окружностей с центрами , касающиеся соответственно сторон треугольника;  — полупериметр треугольника;  — радиус вписанной окружности;  — радиус описанной окружности.

  • Длина отрезка касательной, проведенной к вневписанной окружности из противоположной вершины, равна полупериметру треугольника.
  • Площадь треугольника последнее равенство по формуле Герона.[1]
  • Исходный треугольник является ортотреугольником для треугольника
  • Барицентрические координаты
  • Теорема Эйлера для вневписанных окружностей: , где O — центр описанной окружности.
  • Радикальный центр вневписанных окружностей — центр Шпикера (центр вписанной окружности срединного треугольника).
  • Центры вписанной и вневписанных окружностей — неподвижные точки изогонального сопряжения.
  • Центр окружности, проходящей через центры вневписанных окружностей — точка Бевэна.
  • Три центра трех вневписанных окружностей данного треугольника образуют треугольник трёх внешних биссектрис.
  • Три перпендикуляра к сторонам треугольника, проведенные в точках их пересечения с тремя вневписанными окружностями, пересекаются в одной точке (следствие Теорем о вершинах подерного треугольника[2]).
  • На прямой, проходящей через точки касания двух вневписанных окружностей треугольника с его сторонами, эти вневписанные окружности высекают равные отрезки.

Вневписанная окружность четырехугольника[править | править код]

Внеописанный четырёхугольник[править | править код]

  • Внеописанный четырёхугольник — это выпуклый четырёхугольник, продолжения всех четырёх сторон которого являются касательными к окружности (вне четырёхугольника)[3]. Окружность называется вневписанной. Центр вневписанной окружности лежит на пересечении шести биссектрис.
  • Замечание. Вписанную, описанную, а также вневписанную окружности можно провести не у всякого четырёхугольника. Если противоположные стороны выпуклого четырёхугольника ABCD пересекаются в точках E и F, то условием его внеописанности является любое из двух условий ниже:

Литература[править | править код]

  • Понарин Я. П. Элементарная геометрия. В 2 т. — М.: МЦНМО, 2004. — С. 44-48. — ISBN 5-94057-170-0.
  • Mirko Radic, Zoran Kaliman, Vladimir Kadum. A condition that a tangential quadrilateral is also a chordal one // Mathematical Communications. — 2007. — Вып. 12.

Примечания[править | править код]

  1. Pathan, Alex, and Tony Collyer, "Area properties of triangles revisited, " Mathematical Gazette 89, November 2005, 495—497.
  2. Зетель С.И. Новая геометрия треугольника. Пособие для учителей. 2-е издание.. — М.: Учпедгиз, 1962. — С. 137-138, п. 126, теорема.
  3. Radic, Kaliman, Kadum, 2007, с. 33—52.

См. также[править | править код]