Второй закон Ньютона

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Второй закон Ньютона — дифференциальный закон механического движения, описывающий зависимость ускорения тела от равнодействующей всех приложенных к телу сил и массы тела. Один из трёх законов Ньютона.

Объектом, о котором идёт речь во втором законе Ньютона, является материальная точка, обладающая неотъемлемым свойством — инерцией[1], величина которой характеризуется массой. В классической (ньютоновской) механике масса материальной точки полагается постоянной во времени и не зависящей от каких-либо особенностей её движения и взаимодействия с другими телами[2][3][4][5].

Второй закон Ньютона в его наиболее распространённой формулировке утверждает: в инерциальных системах ускорение, приобретаемое материальной точкой, прямо пропорционально вызывающей его силе, совпадает с ней по направлению и обратно пропорционально массе материальной точки.

В приведённой формулировке второй закон Ньютона справедлив только для скоростей, много меньших скорости света, и в инерциальных системах отсчёта.

Формулировки[править | править вики-текст]

Изменение количества движения пропорционально приложенной движущей силе и происходит по направлению той прямой, по которой эта сила действует.

  • Современная формулировка:

В инерциальных системах отсчёта ускорение, приобретаемое материальной точкой, прямо пропорционально вызывающей его силе, совпадает с ней по направлению и обратно пропорционально массе материальной точки.

Обычно этот закон записывается в виде формулы:
где ускорение тела, сила, приложенная к телу, а масса материальной точки.
Или в ином виде:
  • Формулировка второго закона Ньютона с использованием понятия импульса:

В инерциальных системах отсчёта производная импульса материальной точки по времени равна действующей на неё силе[7].

где импульс (количество движения) точки, — её скорость, а время.

При такой формулировке, как и ранее, полагают, что масса материальной точки неизменна во времени[8][9][10].

Иногда в рамках классической механики предпринимались попытки распространить сферу применения уравнения и на случай тел переменной массы. Однако вместе с таким расширительным толкованием уравнения приходилось существенным образом модифицировать принятые ранее определения и изменять смысл таких фундаментальных понятий, как материальная точка, импульс и сила[11][12].

Уравнения, соответствующие данному закону, называются уравнениями движения материальной точки.

При независимом выборе единиц массы, силы и ускорения выражение второго закона нужно писать в виде

где — коэффициент пропорциональности, значение которого определяется выбором единиц измерения[13][14][15][16].

Применимость различных формулировок[править | править вики-текст]

Второй закон Ньютона в виде приближённо справедлив только для скоростей, много меньших скорости света, и в инерциальных системах отсчёта.

Релятивистская динамика[править | править вики-текст]

В виде второй закон Ньютона точно справедлив также в инерциальных системах отсчёта специальной теории относительности и в локально инерциальных системах отсчёта общей теории относительности, однако при этом вместо прежнего выражения для импульса используется равенство , где — скорость света[17].

Cуществует и четырёхмерное релятивистское обобщение второго закона Ньютона. Производная четырёхимпульса по собственному времени материальной точки равна четырёхсиле [18]:

.

Значение[править | править вики-текст]

Оценивая значение второго закона Ньютона, А. Эйнштейн писал:

Дифференциальный закон является той единственной формой причинного объяснения, которая может полностью удовлетворять современного физика. Ясное понимание дифференциального закона есть одно из величайших духовных достижений Ньютона… Только переход к рассмотрению явления за бесконечно малое время (т. е. к дифференциальному закону) позволил Ньютону дать формулировку, пригодную для описания любого движения… Так Ньютон пришёл… к установлению знаменитого закона движения:

Вектор ускорения × Масса = Вектор силы.
Это — фундамент всей механики и, пожалуй, всей теоретической физики.

Эйнштейн А. Собрание научных трудов. — М.: Наука, 1967. — Т. 4. — С. 82, 92. — 599 с. — 31 700 экз.

Обсуждение[править | править вики-текст]

В случае отсутствия воздействия на тело со стороны других тел (), из второго закона Ньютона следует, что ускорение тела равно нулю. Отсюда может показаться, что первый закон Ньютона входит во второй, как его частный случай. Однако, это не так, поскольку первый закон по сути постулирует существование инерциальных систем отсчёта. Соответственно, первый закон Ньютона формулируется независимо от второго[19].

Второй закон Ньютона выполняется только в инерциальных системах отсчёта[20][21]. Тем не менее, добавляя к силам со стороны других тел силы инерции, для описания движения в неинерциальных системах отсчёта можно пользоваться уравнением второго закона Ньютона[22]. С учётом сил инерции для неинерциальной системы отсчёта уравнение второго закона Ньютона выполняется в той же форме, что и для инерциальной системы: масса тела, умноженная на его ускорение относительно неинерциальной системы отсчёта равна по величине и направлению равнодействующей всех сил, включая и силы инерции, приложенные к телу[23] [24].

Квантовая механика[править | править вики-текст]

Второй закон Ньютона применим при определённых условиях и к движению волнового пакета в квантовой механике. Если потенциальная энергия волнового пакета пренебрежимо мало изменяется в области нахождения пакета, то производная по времени среднего значения импульса пакета будет равно силе, понимаемой как градиент потенциальной энергии, взятый с обратным знаком (теорема Эренфеста).

Видоизменённый второй закон Ньютона используется и при описании движения электронов в кристаллической решетке. В этом случае взаимодействие электрона с периодическим электромагнитным полем кристаллической решетки учитывается введением понятия эффективной массы.

Обобщение[править | править вики-текст]

Из уравнений Лагранжа для произвольной голономной системы, на которую действуют как потенциальные, так и непотенциальные обобщенные силы следует, что производная по времени обобщённого импульса равна сумме потенциальных и непотенциальных обобщённых сил :

.

Теорема об изменении обобщённого импульса обобщает и включает как частные случаи теоремы ньютоновской динамики об изменении количества движения и об изменении кинетического момента[25].

См. также[править | править вики-текст]

Примечания[править | править вики-текст]

  1. То же, что инертность. См. Инерция // Физическая энциклопедия : [в 5 т.] / Гл. ред. А. М. Прохоров. — М.: Советская энциклопедия, 1990. — Т. 2: Добротность — Магнитооптика. — С. 146. — 704 с. — 100 000 экз. — ISBN 5-85270-061-4.
  2. "Дополнительной характеристикой (по сравнению с геометрическими характеристиками) материальной точки является скалярная величина m — масса материальной точки, которая, вообще говоря, может быть как постоянной, так и переменной величиной. ... В классической ньютоновской механике материальная точка обычно моделируется геометрической точкой с присущей ей постоянной массой) являющейся мерой её инерции." стр. 137 Седов Л. И., Цыпкин А. Г. Основы макроскопических теорий гравитации и электромагнетизма. М: Наука, 1989.
  3. Маркеев А. П. Теоретическая механика. — М.: ЧеРО, 1999. — С. 87. — 572 с. «Масса материальной точки считается постоянной величиной, не зависящей от обстоятельств движения».
  4. Голубев Ю. Ф. Основы теоретической механики. — М.: МГУ, 2000. — С. 160. — 720 с. — ISBN 5-211-04244-1. «Аксиома 3.3.1. Масса материальной точки сохраняет своё значение не только во времени, но и при любых взаимодействиях материальной точки с другими материальными точками независимо от их числа и от природы взаимодействий».
  5. Тарг С. М. Краткий курс теоретической механики. — М.: Высшая школа, 1995. — С. 287. — 416 с. — ISBN 5-06-003117-9. «В классической механике масса каждой точки или частицы системы считается при движении величиной постоянной»
  6. Исаак Ньютон. Математические начала натуральной философии. — М.: Наука, 1989. — С. 40. — 690 с. — («Классики науки»). — 5 000 экз. — ISBN 5-02-000747-1.
  7. Сивухин Д. В. Общий курс физики. — М.: Физматлит; изд-во МФТИ, 2005. — Т. I. Механика. — С. 76. — 560 с. — ISBN 5-9221-0225-7.
  8. Маркеев А. П. Теоретическая механика. — М.: ЧеРО, 1999. — С. 254. — 572 с. «…второй закон Ньютона справедлив только для точки постоянного состава. Динамика систем переменного состава требует особого рассмотрения».
  9. Иродов И. Е. Основные законы механики. — М.: Высшая школа, 1985. — С. 41. — 248 с.«В ньютоновской механике… m=const и dp/dt=ma».
  10. Kleppner D., Kolenkow R. J. An Introduction to Mechanics. — McGraw-Hill, 1973. — P. 112. — ISBN 0-07-035048-5. «For a particle in Newtonian mechanics, M is a constant and (d/dt)(Mv) = M(dv/dt) = Ma».
  11. Зоммерфельд А. Механика = Sommerfeld A. Mechanik. Zweite, revidierte auflage, 1944. — Ижевск: НИЦ «Регулярная и хаотическая динамика», 2001. — С. 45-46. — 368 с. — ISBN 5-93972-051-X.
  12. Кильчевский Н. А. Курс теоретической механики. Том 1. — М.: Наука, 1977. 480 с.
  13. Савельев И. В. Курс общей физики / 2-е изд., перераб. — М.: Наука, 1982. — Т. 1. Механика. Молекулярная физика. — С. 54. — 432 с.
  14. Сена Л. А. Единицы физических величин и их размерности. — М.: Наука, 1969. — С. 22. — 304 с.
  15. Мултановский В.В. Курс теоретической физики: Классическая механика. Основы специальной теории относительности. Релятивистская механика. — М.: Просвещение, 1988. — С. 73. — 304 с. — ISBN 5-09-000625-3.
  16. «Не следует смешивать понятия силы и произведения массы на ускорение, которому она равна» (Фок В.А. Механика. Рецензия на книгу: Л. Ландау и Л. Пятигорский. Механика. (Теоретическая физика под общей редакцией проф. Л.Д.Ландау, т. I). Гостехиздат. Москва — Ленинград, 1940 // УФН. — 1946. — Т. 28, вып. 2–3. — С. 377–383.).
  17. Савельев И. В. Курс общей физики. Т. 1. Механика. Молекулярная физика. — М.: Наука, 1987. — С. 237.
  18. Бугаенко Г. А., Маланин В. В., Яковлев В. И. Основы классической механики. — М.: Высшая школа, 1999. — С. 347. — ISBN 5-06-003587-5
  19. Савельев И. В. Курс общей физики. Том 1. Механика. Молекулярная физика. — М.: Наука, 1987. — C. 54
  20. Савельев И. В. Курс общей физики. Том 1. Механика. Молекулярная физика. — М.: Наука, 1987. — C. 118
  21. Ландсберг Г. С. Элементарный учебник физики. Том 1. Механика. Теплота. Молекулярная физика. — М.: Наука, 1975. — C. 289
  22. Савельев И. В. Курс общей физики. Том 1. Механика. Молекулярная физика. — М.: Наука, 1987. — C. 118-119
  23. Ландсберг Г. С. Элементарный учебник физики. Том 1. Механика. Теплота. Молекулярная физика. — М.: Наука, 1975. — C. 291
  24. Савельев И. В. Курс общей физики. Том 1. Механика. Молекулярная физика. — М.: Наука, 1987. — C. 119
  25. Бугаенко Г. А., Маланин В. В., Яковлев В. И. Основы классической механики. — М.: Высшая школа, 1999. — С. 247. — ISBN 5-06-003587-5

Ссылки[править | править вики-текст]