Гамильтониан (квантовая механика)

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
 ⛭  Квантовая механика

Принцип неопределённости
Введение
Математические основы
См. также: Портал:Физика

Гамильтониа́н ( или H) в квантовой теории — оператор полной энергии системы (ср. Функция Гамильтона). Название «гамильтониан», как и название «функция Гамильтона», происходит от фамилии ирландского математика Уильяма Роуэна Гамильтона.

Его спектр — это множество возможных значений при измерении полной энергии системы. Спектр гамильтониана может быть дискретным или непрерывным. Также может быть ситуация (например, для Кулоновского потенциала), когда спектр состоит из дискретной и непрерывной части.

Так как энергия — вещественная величина, гамильтониан является самосопряжённым оператором.

Уравнение Шрёдингера[править | править вики-текст]

Гамильтониан генерирует временную эволюцию квантовых состояний. Если  — состояние системы в момент времени t, то

Это уравнение называется уравнением Шрёдингера (оно выглядит так же, как и уравнение Гамильтона — Якоби в классической механике). Зная состояние в начальный момент времени (t = 0), мы можем решить уравнение Шрёдингера и получить вектор состояния в любой последующий момент времени. В частности, если H не зависит от времени, то

Оператор экспоненты в правой части уравнения Шрёдингера определяется через степенной ряд по H.

По свойству *-гомоморфизма, оператор

унитарен. Это оператор временной эволюции, или пропагатор замкнутой квантовой системы.

Если Гамильтониан не зависит от времени, {U(t)} образует однопараметрическую группу; отсюда следует принцип детального равновесия.

Выражения для Гамильтониана в координатном представлении[править | править вики-текст]

Свободная частица[править | править вики-текст]

Если у частицы нет потенциальной энергии, то Гамильтониан самый простой. Для одного измерения:

и для трёх измерений:

Потенциальная яма[править | править вики-текст]

Для частицы в постоянном потенциале V = V0 (нет зависимости от координаты и времени), в одном измерении, Гамильтониан такой:

В трёх измерениях:

Простой гармонический осциллятор[править | править вики-текст]

Для простого гармонического осциллятора в одном измерении потенциал зависит от координаты (но не от времени), как

где угловая частота, коэффициент упругости k и масса m осциллятора удовлетворяют соотношению

поэтому Гамильтониан имеет вид

Для трёх измерений гамильтониан принимает вид

где трёхмерный радиус-вектор r, его модуль определяется так:

Полный Гамильтониан — это сумма одномерных Гамильтонианов:

В квантовой теории поля[править | править вики-текст]

В классической теории поля роль обобщённых координат играют функции поля в каждой точке пространства-времени, в квантовой теории поля они становятся операторами. Для системы взаимодействующих полей гамильтониан представляет собой сумму операторов энергии свободных полей и энергию их взаимодействия. В отличие от лагранжиана, гамильтониан не даёт явно релятивистски-инвариантного описания системы — энергия в разных инерциальных системах отсчёта различна, хотя для релятивистских систем эта инвариантность может быть доказана.

Ссылки[править | править вики-текст]

Логотип Викисловаря
В Викисловаре есть статья «гамильтониан»