Геликон (физика)

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Геликон (др.-греч. ἕλιξ, род. падеж. ἕλικος — кольцо, спираль) — низкочастотная электромагнитная волна, которая возникает в некомпенсированной плазме, находящейся во внешнем постоянном магнитном поле.

Из истории открытия[править | править вики-текст]

Существование электромагнитных возбуждений геликонного типа в плазме твердых тел было предсказано в 1960 году: в металлах — О. В. Константиновым и В. И. Перелем[1], в полупроводниках — П. Эгреном[2]. Термин «геликон» был введен Эгреном и отражал круговой характер поляризации этой волны. Через год геликоны были экспериментально обнаружены в натрии[3]. В том же году было установлено, что так называемые «свистящие атмосферики» (вистлеры) представляют собой геликонные волны, распространяющиеся в газовой плазме ионосферы Земли.

Режимы существования геликонов[править | править вики-текст]

Возможность распространения электромагнитных волн в хорошо проводящих средах в присутствии сильного магнитного поля можно пояснить следующим образом. В отсутствие магнитного поля в среде имеет место скин-эффект: под действием излучения с частотой, меньшей плазменной, возникают токи, которые экранируют электромагнитное возмущение и препятствуют его проникновению вглубь вещества. Магнитное поле ослабляет это экранирование, заставляя носители заряда под действием силы Лоренца двигаться более упорядоченно и мешая им эффективно реагировать на поле электромагнитной волны. Это дает возможность распространения в среде низкочастотных геликонов.

В зависимости от соотношения длины свободного пробега носителей заряда и длины волны электромагнитного возбуждения выделяют «локальный» и «нелокальный» режимы распространения геликонов. Для рассмотрения каждого из этих случаев приходится применять различные теоретические и экспериментальные подходы.

Локальный режим[править | править вики-текст]

Условие локальности может быть записано в виде ~ql<<1, где ~q — волновое число геликона, ~l — длина свободного пробега носителей заряда (электронов). Основные особенности геликонных волн могут быть получены в модели свободных электронов. Рассматривая падение на проводящую среду электромагнитной волны частоты ~\omega в условиях мгновенного равновесия, можно получить дисперсионное соотношение для геликона:

~q^2_{\pm}=\omega \mu_0 / \rho (\pm u+i) \cos \phi,

где ~\mu_0 — магнитная проницаемость вакуума, ~\rho=m / n e^2 \tau — сопротивление, ~u=R B_0 / \rho=\omega_c \tau — тангенс угла Холла между током и напряженностью электрического поля, ~B_0 — постоянное магнитное поле, ~\phi — угол между ~q и ~B_0. Здесь ~m — масса электрона, ~e — его заряд, ~n — плотность электронов, ~\tau — характерное время, за которое носители теряют импульс при столкновениях с решеткой; ~R=1/ne — константа Холла, ~\omega_c=e B_0 / m — циклотронная частота носителей. Условием распространяющихся волн является неравенство ~|{\rm Re} q|>>|{\rm Im} q|. В полубесконечном металле геликон, распространяющийся вдоль постоянного магнитного поля, является поперечной циркулярно поляризованной волной, электрическое и магнитное поля которой вращаются вокруг направления распространения в том же направлении, что и электроны.

В общем случае необходимо учитывать тензорный характер параметров среды, в частности сопротивления ~\rho, а также граничные условия в ситуации пространственно ограниченных структур.

Нелокальный режим[править | править вики-текст]

Условием нелокальности является соотношение ~ql>>1, то есть на длине свободного пробега укладывается много длин волн геликона. Поэтому в данном случае нельзя пренебрегать микроскопическим (циклотронным) движением носителей заряда. С математической точки зрения это приводит к необходимости вычисления нелокального тензора проводимости. Физическую картину в нелокальном случае определяют эффекты бесстолновительного поглощения волны носителями, крайними случаями которого являются доплер-сдвинутый циклотронный резонанс (условие поглощения ~qV_F/\omega_c>1, где ~V_F — скорость свободных электронов, равная скорости Ферми) и магнитное затухание Ландау (~qV_F/\omega_c<<1). Эти процессы существенно ограничивают диапазон существования распространяющихся геликонных волн.

Эксперименты с геликонами[править | править вики-текст]

Методы исследования[править | править вики-текст]

К основным методам наблюдения и изучения геликонов относятся:

Результаты исследований[править | править вики-текст]

Экспериментальные наблюдения геликонов в локальном режиме позволяют измерить константу Холла, магнетосопротивление, поверхностное поглощение волн при различных геометриях образцов.

Эксперименты в нелокальном режиме в условиях циклотронного поглощения и затухания Ландау позволяют определять поверхностный импеданс образцов, форму поверхности Ферми, оценить роль столкновений в процессах затухания. Отдельным направлением исследований является изучение взаимодействия геликонов с другими типами возбуждения в веществе: со звуком (геликон-фононное взаимодействие, позволяющее осуществлять электромагнитное возбуждение акустических волн), с магнитными моментами ядер (ЯМР-поглощение геликона), со спиновыми волнами в ферромагнетиках (геликон-магнонное взаимодействие).

Примечания[править | править вики-текст]

  1. О.В. Константинов, В.И. Перель. О возможности прохождения электромагнитных волн через металл в сильном магнитном поле. // ЖЭТФ. — 1960. — Т. 38. — С. 161.
  2. P. Aigrain. Les "Helicons" dans les semiconducteurs. // Рrос. Int. Conf. on Semiconduction Phys., Prague, 1960. — С. 224.
  3. R. Bowers, C. Legendy, and F. Rose. Oscillatory Galvanomagnetic Effect in Metallic Sodium. // Phys. Rev. Lett. — 1961. — Т. 7. — № 9. — С. 339-341.

Литература[править | править вики-текст]