Гидродинамика

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
 Просмотр этого шаблона  Механика сплошных сред
BernoullisLawDerivationDiagram.svg
Сплошная среда
См. также: Портал:Физика

Гидродина́мика — раздел физики сплошных сред, изучающий движение идеальных и реальных жидкостей и газа. Как и в других разделах физики сплошных сред, прежде всего осуществляется переход от реальной среды, состоящей из большого числа отдельных атомов или молекул, к абстрактной сплошной среде, для которой и записываются уравнения движения.

История гидродинамики[править | править вики-текст]

Первые попытки исследования сопротивления среды движению тела были сделаны Леонардо да Винчи и Галилео Галилеем. Принято считать, что Галилео проводил опыты по сбрасыванию шаров различной плотности с пизанской башни, данный опыт описывается в учебной литературе и поэтому известен всем со школьных времен (достоверной информации, подтверждающей проведение данного опыта Галилео Галилеем на сегодняшний день не имеется). В 1628 году Бенедетто Кастелли издал маленькую работу, в которой он очень хорошо для своего времени объяснил несколько явлений при движении жидкости в реках и каналах. Однако, в работе содержалась ошибка, так как он предполагал скорость вытекания жидкости из сосуда пропорциональной расстоянию отверстия до поверхности воды. Торричелли заметил, что вода, выливающаяся из фонтана поднимается на высоту порядка уровня воды питающего водоема. На основе этого он доказал[источник не указан 30 дней] теорему, о пропорциональности скорости вытекания квадратному корню из расстояния от отверстия до поверхности жидкости. Теорема была экспериментально проверена на воде, вытекающей из различных насадок. Едме Мариотто в труде, который был опубликован после его смерти впервые объяснял несоответствие теории и экспериментов при помощи учета эффектов трения. В труде Исаака Ньютона «philosophie naturalis principia mathematica» для объяснения снижения скорости проточной воды использовались именно понятия вязкости и трения. Также в работах Ньютона развивались представления Мариотто о потоке воды как о наборе трущихся нитей. Эта теория уже сопоставима с современной теорией переноса движения в жидкостях.

После издания Ньютоном своих работ ученые всего мира начали пользоваться его законами для объяснения различных физических явлений. Спустя 60 лет Эйлер получил аналог второго закона Ньютона для жидкости. В 1738 году Даниил Бернулли издал работу, где объяснялась теория движения жидкостей. Он использовал два предположения: поверхности жидкости, вытекающей из сосуда всегда остается горизонтальной[источник не указан 30 дней] и то, что скорость опускания слоев воды обратно пропорциональна их ширине. В отсутствии демонстраций этих принципов теория доверия не получила.

Колин Маклорен и Иоанн Бернулли хотели создать более общую теорию, зависящую только от фундаментальных законов Ньютона. Научное сообщество сочло их методы недостаточно строгими. Теория Даниила Бернулли встретила сопротивление со стороны Жана Лерона Даламбера, разработавшего свою теорию. Он применил принцип, полученный Якобом Бернулли, который сводил законы движения тел к закону их равновесия. Даламбер применил этот принцип для того, чтобы описать движение жидкостей. Он использовал те же гипотезы, что и Даниил Бернулли, хотя его исчисление было выстроено в другой манере. Он рассматривал в каждый момент движения слоя жидкости составленным из движения в прошлый момент времени и движения, который он потерял. Законы равновесия между потерями и потерями движения дали уравнения, представляющее уравнение движение жидкости. Оставалось выразить уравнениями движение частицы жидкости в любом заданном направлении. Эти уравнения были найдены Даламбером из двух принципов: прямоугольный канал, выделенный в массе жидкости, находящейся в равновесии, сам находится в равновесии и часть жидкости, переходящая из одного места в другое сохраняет тот же самый объем, если она является несжимаемой и изменяет объем с учетом законов упругости, в противном случае. Этот метод был перенят и доведен до совершенства Леонардом Эйлером. Решение вопрос в движения жидкостей было произведено с помощью метода частных производных Эйлера. Это исчисление было впервые применено к движению воды Даламбером. Метод позволил представить теорию жидкостей в формулировке, не ограниченной никакими особыми предположениями.

Основные разделы гидродинамики[править | править вики-текст]

Идеальная среда[править | править вики-текст]

С точки зрения механики, жидкостью называется вещество, в котором в равновесии отсутствуют касательные напряжения. Если движение жидкости не содержит резких градиентов скорости, то касательными напряжениями и вызываемым ими трением можно пренебречь и при описании течения. Если вдобавок малы градиенты температуры, то можно пренебречь и теплопроводностью, что и составляет приближение идеальной жидкости. В идеальной жидкости, таким образом, рассматриваются только нормальные напряжения, которые описываются давлением. В изотропной жидкости, давление одинаково по всем направлениям и описывается скалярной функцией.

Гидродинамика ламинарных течений[править | править вики-текст]

Гидродинамика ламинарных течений изучает поведение регулярных решений уравнений гидродинамики, в которых первые производные скорости по времени и по пространству являются конечными. В некоторых случаях со специальной геометрией уравнения гидродинамики могут быть решены точно. Некоторые наиболее важные задачи этого раздела гидродинамики:

Турбулентность[править | править вики-текст]

Турбулентность — название такого состояния сплошной среды, газа, жидкости, их смесей, когда в них наблюдаются хаотические колебания мгновенных значений давления, скорости, температуры, плотности относительно некоторых средних значений, за счёт зарождения, взаимодействия и исчезновения в них вихревых движений различных масштабов, а также линейных и нелинейных волн, солитонов, струй. Происходит их нелинейное вихревое взаимодействие и распространение в пространстве и времени. Турбулентность возникает, когда число Рейнольдса превышает критическое.

Турбулентность может возникать и при нарушении сплошности среды, например, при кавитации (кипении). При опрокидывании и разрушении волны прибоя возникает многофазная смесь воды, воздуха, пены. Мгновенные параметры среды становятся хаотичными.

Существуют три зоны турбулентности, в зависимости от переходных чисел Рейнольдса: зона гладкостенного трения, переходная зона(смешанного трения)и зона гидравлически шероховатых труб (зона квадратического трения). Все магистральные нефте- и газопроводы эксплуатируются в зоне гидравлически шероховатых труб.

Турбулентное течение, по-видимому, может быть описано системой нелинейных дифференциальных уравнений. В неё входит уравнения Навье — Стокса, неразрывности и энергии.

Моделирование турбулентности — одна из наиболее трудных и нерешённых проблем в гидродинамике и теоретической физике. Турбулентность всегда возникает при превышении некоторых критических параметров: скорости и размеров обтекаемого тела или уменьшения вязкости. Она также может возникать при сильно неравномерных граничных и начальных условиях на границе обтекаемого тела. Или, может исчезать при сильном ускорении потока на поверхности, при сильной стратификации среды. Поскольку турбулентность характеризуется случайным поведением мгновенных значений скорости и давления, температуры в данной точке жидкости или газе, то это означает, что при одних и тех же условиях детальная картина распределения этих величин в жидкости будет различной и практически никогда не повторяется. Поэтому, мгновенное распределение скорости в различных точках турбулентного потока обычно не представляет интереса, а важными являются осреднённые величины. Проблема описания гидродинамической турбулентности заключается, в частности, и в том, что пока не удаётся на основании только уравнений гидродинамики предсказать, когда именно должен начинаться турбулентный режим и что именно в нём должно происходить без экспериментальных данных. На суперкомпьютерах удаётся моделировать только некоторые типы течений. В результате, приходится довольствоваться лишь феноменологическим, приближенным описанием. До конца XX столетия два результата, описывающие турбулентное движение жидкости считались незыблемыми — «универсальный» закон фон Кармана-Прандтля о распределении средней локальной скорости течения жидкости (вода, воздух) в гладких трубах при высоких значениях числа Рейнольдса и теория Колмогорова-Обухова о локальной структуре турбулентности.

Значительный прорыв в теории турбулентности при очень высоких числах Рейнольдса связан с работами Андрея Николаевича Колмогорова 1941 и 1962 годов, который установил, что при некотором интервале чисел Рейнольдса локальная статистическая структура турбулентности носит универсальный характер, зависит от нескольких внутренних параметров и не зависит от внешних условий.

Сверхзвуковая гидродинамика[править | править вики-текст]

Этот раздел изучает поведение течений при их скоростях вблизи или превышающих скорость звука в среде. Отличительной особенностью такого режима является то, что при нем возникают ударные волны. В определённых случаях, например, при детонации, структура и свойства ударной волны усложняются. Интересен также случай, когда скорости течений столь высоки, что становятся близкими к скорости света. Такие течения наблюдаются во многих астрофизических объектах, и их поведение изучает релятивистская гидродинамика.

Тепломассообмен[править | править вики-текст]

Часто течения жидкостей сопровождается неравномерным распределением температуры (остывание тел в жидкости, течение горячей жидкости по трубам). При этом свойства жидкости (плотность, вязкость, теплопроводность) могут сами зависеть от локальной температуры. В таком случае задача о распространении тепла и задача движения жидкости становятся связанными. Дополнительная сложность таких задач состоит в том, что зачастую простейшие решения становятся неустойчивыми…

Геофизическая гидродинамика[править | править вики-текст]

Посвящена исследованию явлений и физических механизмов естественных крупномасштабных турбулентных течений на вращающейся планете (динамики атмосферы, динамики течний в морях и океанах, циркуляции в жидком ядре, происхождение и изменчивость планетарного магнитного поля).

Магнитная гидродинамика[править | править вики-текст]

Описывает поведение электропроводящих сред (жидких металлов, электролитов, плазмы) в магнитном поле.

Теоретическая основа магнитной гидродинамики — уравнения гидродинамики с учетом электрических токов и магнитных полей в среде и уравнений Максвелла. В средах с большой проводимостью (горячая плазма) и (или) большими размерами (астрофизические объекты) к обычному газодинамическому давлению добавляются магнитное давление и магнитное натяжение, которое приводит к появлению волн Альфве́на.

С помощью магнитной гидродинамики описываются многие явления космической физики: планетарные и звездные магнитные поля, происхождение магнитных полей галактик, солнечный цикл, хромосферные вспышки на солнце, солнечные пятна.

Прикладная гидродинамика[править | править вики-текст]

Сюда относятся различные конкретные научно-технические задачи. Среди прочих задач упомянем

Реология[править | править вики-текст]

Реология — раздел гидродинамики, изучающий поведение нелинейных жидкостей, то есть таких жидкостей, для которых зависимости скорости течения от приложенной силы нелинейна. Примеры нелинейных жидкостей — пасты, гели, стекловидные тела, псевдопластики, вискоэластики. Реология активно используется в материаловедении, в геофизике.

Нерешенные проблемы гидродинамики[править | править вики-текст]

В гидродинамике есть сотни нерешенных задач, в том числе задача о вытекании жидкости из ванны по трубе[1].

См. также[править | править вики-текст]

Литература[править | править вики-текст]

Ссылки[править | править вики-текст]

Примечания[править | править вики-текст]

  1. Бетяев С. К. Гидродинамика: проблемы и парадоксы, УФН, т. 165, 1995, № 3, с. 299—330