Гипероператор

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

В математике гиперопера́тор — это обобщение арифметических операций сложения, умножения и возведения в степень, рассматриваемых как гипероператоры 1-го, 2-го и 3-го порядка соответственно, на высшие порядки. Гипероператор порядка n с аргументами a и b (обозначаемый a(n)b) рекурсивно определяется как результат многократного применения гипероператора порядка n-1 к последовательности из b одинаковых аргументов, каждый из которых равен a:

  • сложение a и b — увеличение числа a на количество единиц, равное b:
  • умножение a на b — сложение числа a с самим собой b раз:
  • ...

В последнем выражении операции выполняются справа налево, что является существенным, так как гипероператоры порядка n>2 не являются ни коммутативными, ни ассоциативными. Гипероператоры 4-го, 5-го и 6-го порядка называются «тетра́ция», «пента́ция» и «гекса́ция» соответственно.

В простейшем случае значения переменных a, b и n ограничиваются целыми неотрицательными числами. Возможные обобщения гипероператоров на произвольные действительные или комплексные числа пока мало изучены.

Разные математики обозначают гипероператоры по разному:

Определение[править | править вики-текст]

Отвечая на вопрос: «Что будет при продолжении стандартной последовательности математических действий?» сложение (+), умножение (×), возведение в степень (^) и учитывая:

рекурсивно определим общую операцию в инфиксной форме:

Тогда гипероператор определяется как и

Распишем для первых натуральных четырёх n:

Вычисление слева направо[править | править вики-текст]

Альтернативная операция может быть получена путём вычисления слева направо и в силу коммутативности и ассоциативности операций сложения и умножения эта операция совпадает с Гипероператором при n<4:

См. также[править | править вики-текст]

Ссылки[править | править вики-текст]

  • Эвнин А. Ю. Сверхстепени и их разности // Математическое образование. — 2001. — № 1(16). — С. 68-73.
  • Шустов В. В. Общее числовое действие и некоторые его свойства. — 2008. — 64 с. — ISBN 978-5-382-00546-1.