Гиперпрямоугольник

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
Гиперпрямоугольник
n-прямоугольник
Прямоугольный параллелепипед
Прямоугольный параллелепипед является 3-прямоугольником
Тип Призма
Фасет 2n
Вершин 2n
Символ Шлефли {} × {} … × {}
Диаграмма Коксетера — Дынкина CDel node 1.pngCDel 2.pngCDel node 1.pngCDel node 1.png
Группа симметрии[en] [2n-1], порядок 2n
Двойственный
многогранник
Прямоугольный n-ромб
Свойства выпуклый, зоноэдр, изогональный

n-гиперпрямоугольник[1] — это обобщение прямоугольника на более высокие размерности и формально определяется как прямое произведение промежутков.

Типы[править | править код]

Трёхмерный гиперпрямоугольник называется также прямоугольной призмой или прямоугольным параллелепипедом.

Специальный случай n-прямоугольника, в котором все рёбра имеют одинаковую длину, является n-кубом[1].

По аналогии термин «гиперпрямоугольник» относится к прямому произведению ортогональных интервалов другого вида, таких как диапазоны ключей в базе данных или диапазоны целых чисел, а не вещественных чисел[2].

Двойственный многогранник[править | править код]

n-ромб
Rectangular fusil
Пример: 3-ромб
Фасет 2n
Вершин 2n
Символ Шлефли {} + {} + … + {}
Диаграмма Коксетера — Дынкина CDel node f1.pngCDel 2x.pngCDel node f1.pngCDel 2x.pngCDel 2x.pngCDel node f1.png
Группа симметрии[en] [2n-1], порядок 2n
Двойственный
многогранник
n-прямоугольник
Свойства выпуклый, изогональный

Двойственный многогранник n-прямоугольника называется n-ортоплексом или n-ромбом. Многогранник строится по 2n точкам в центрах прямоугольных фасет прямоугольника.

Символ Шлефли n-ромба представляется суммой n ортогональных отрезков: { } + { } + … + { }.

1-ромб — это отрезок. 2-ромб — это ромб.


n Пример
1 Cross graph 1.svg
{ }
CDel node f1.png
2 Rhombus (polygon).png
{ } + { }
CDel node f1.pngCDel 2x.pngCDel node f1.png
3 Dual orthotope-orthoplex.svg
Ромбический 3-ортоплекс внутри 3-прямоугольника
{ } + { } + { }
CDel node f1.pngCDel 2x.pngCDel node f1.pngCDel 2x.pngCDel node f1.png

См. также[править | править код]

Примечания[править | править код]

  1. 1 2 Coxeter, 1973, с. 122–123.
  2. См., например, (Zhang, Munagala, Yang 2011)

Литература[править | править код]

Ссылки[править | править код]