Гипотеза мира полиароматических углеводородов

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Мир полиароматических углеводородов — гипотетический этап химической эволюции, когда полициклические ароматические углеводороды (ПАУ), которые, возможно, были в изобилии в первичном бульоне ранней Земли, привели к синтезу молекул РНК, что создало предпосылки для мира РНК и возникновению жизни.

Синтез РНК из ПАУ

История[править | править код]

Эксперимент Миллера — Юри в 1952 году продемонстрировал синтез органических молекул, таких как аминокислоты, формальдегид и моносахариды, из исходных неорганических предшественников, которые, возможно, присутствовали в первичном бульоне.

Исследование свойств РНК показало, что молекулы РНК способны к хранению, передаче, и размножению генетической информации, а также способны катализировать реакции в качестве рибозимов. В результате, в 1968—1986 годах сформировалась гипотеза мира РНК, в которой молекулы РНК предшествовали современной ДНК-РНК-белковой жизни, обособленной мембраной от внешней среды.

Тем не менее, в этой картине химической эволюции есть несколько пропущенных этапов, например, непонятно, как возникли первые РНК-молекулы. Гипотеза мира ПАУ была высказана Саймоном Николасом Платтсом (Simon Nicholas Platts) в мае 2004 года в попытке заполнить пропущенный этап[1]. Более полно разработанная идея была опубликована в 2006 году группой учёных Ehrenfreund и др.[2]

Полициклические ароматические углеводороды (ПАУ)[править | править код]

Полиароматические углеводороды широко распространены в видимой Вселенной и, вероятно, были представлены в первичном бульоне ранней Земли[3]. ПАУ, вместе с фуллеренами (или бакиболами) были обнаружены в космических туманностях[4]. По словам астронома Летиции Стангеллини (Letizia Stanghellini), вполне возможно, что бакиболы из внешнего космоса явились семенами жизни на Земле[5].

ПАУ обычно плохо растворимы в морской воде, но в результате ионизирующего облучения солнечным ультрафиолетом внешние атомы водорода могут быть отщеплены и заменены на гидроксильную группу, делая ПАУ более растворимыми в воде.

Эти модифицированные ПАУ амфифильны, то есть имеют гидрофильную и гидрофобную части. В результате они самоорганизуются в стеки, подобные липидам, поворачивая гидрофобные части друг к другу.

Присоединение азотистых оснований к каркасу из ПАУ[править | править код]

В самоорганизующихся стеках ПАУ расстояние между смежными кольцами равно 0,34 нм. На таком же расстоянии находятся смежные азотистые основания в молекулах РНК и ДНК. Более мелкие молекулы будут естественным образом присоединяться к кольцам ПАУ. Однако, кольца ПАУ имеют тенденцию вращаться относительно друг друга, что будет приводить к столкновениям присоединённых молекулярных соединений к смежным кольцам. Всё это вызывает специфическое связывание с плоскими молекулами, такими как пиримидиновыми и пуриновыми азотистыми основаниями — ключевыми компонентами (и переносчиками информации) РНК и ДНК. Эти основания также амфифильны и выстраиваются в аналогичные стеки.

Присоединение олигомерного остова[править | править код]

Согласно гипотезе, после присоединения азотистых оснований к ПАУ-кольцам с помощью водородных связей, промежуток между основаниями детерминирует выбор связывающей молекулы определённого размера, такого как небольшой олигомер формальдегида (также представленный в первичном бульоне), который связывается с азотистыми основаниями уже ковалентными связями[6][1].

Отсоединение РНК-подобной цепочки[править | править код]

Последующее кратковременное повышение кислотности окружающей среды, например, в результате вулканических извержений, освободивших кислотные газы (диоксид серы, углекислый газ), возможно, вызвало отсоединение азотистых оснований от ПАУ-остова, формируя РНК-подобные молекулы (с формальдегидным остовом вместо сахарофосфатного, используемого современными РНК, но с тем же шагом 0,34 нм)[6].

Формирование рибозимоподобных структур[править | править код]

Развивая гипотезу, можно предположить, что РНК-подобные цепочки после отсоединения от ПАУ-стеков начали сворачиваться сами на себя путём комплементарного связывания между азотистыми основаниями с помощью водородных связей, формируя стабильные и частично двухцепочечные РНК-подобные структуры, похожие на рибозимы. Формальдегидные олигомеры остова были в конечном счёте заменены на более стабильные сахарофосфатные молекулы. Всё это создало предпосылки для разнообразного РНК-мира, в котором эволюционировали уже РНК-молекулы[6][1][7].

См. также[править | править код]

Примечания[править | править код]

  1. 1 2 3 «Prebiotic Molecular Selection and Organization» Архивировано 24 мая 2009 года., NASA’s Astrobiology website
  2. Ehrenfreund P, Rasmussen S, Cleaves J, Chen L. (2006) Experimentally tracing the key steps in the origin of life: The aromatic world. Astrobiology 6(3):490-520.
  3. Allamandola, Louis et Al. «Cosmic Distribution of Chemical Complexity» Архивировано 27 февраля 2014 года.
  4. (2010-10-28) «Formation Of Fullerenes In H-Containing Planatary Nebulae». The Astrophysical Journal Letters 724. DOI:10.1088/2041-8205/724/1/L39.
  5. (Atkinson, Nancy. Buckyballs Could Be Plentiful in the Universe, Universe Today (27 октября 2010). Проверено 28 октября 2010.
  6. 1 2 3 Platts, Simon Nicholas, «The PAH World — Discotic polynuclear aromatic compounds as a mesophase scaffolding at the origin of life»
  7. Lincoln, Tracey A.; Joyce, Gerald F. (January 8, 2009). «Self-Sustained Replication of an RNA Enzyme». Science (American Association for the Advancement of Science) 323 (5918): 1229. DOI:10.1126/science.1167856. PMID 19131595. Проверено 2009-01-13. Lay summary – Medical News Today (January 12, 2009).

Ссылки[править | править код]