Глюкагон

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
GCG
Доступные структуры
PDBHuman UniProt search: PDBe RCSB
Идентификаторы
СимволыGCG, GLP1, glucagon, GRPP, GLP-1, GLP2
Внешние IDsOMIM: 138030 HomoloGene: 136497 GeneCards: GCG
Ортологи
ВидЧеловекМышь
Entrez
Ensembl
UniProt
RefSeq (мРНК)

NM_002054

n/a

RefSeq (белок)

NP_002045

n/a

Локус (UCSC)Chr 2: 162.14 – 162.15 Mbn/a
Поиск PubMed[2]n/a
Викиданные
Править (человек)
Модель молекулы глюкагона

Глюкагон — гормон альфа-клеток островков Лангерганса поджелудочной железы. По химическому строению глюкагон является пептидным гормоном.

Молекула глюкагона состоит из 29 аминокислот и имеет молекулярный вес 3485 дальтон. Глюкагон был открыт в 1923 году Кимбеллом и Мерлином[3].

Первичная структура молекулы глюкагона следующая: NH2-His-Ser-Gln-Gly-Thr-Phe- Thr-Ser-Asp-Tyr-Ser-Lys-Tyr-Leu-Asp-Ser- Arg-Arg-Ala-Gln-Asp-Phe-Val-Gln-Trp-Leu- Met-Asn-Thr-COOH

Механизм[править | править код]

Механизм действия глюкагона обусловлен его связыванием со специфическими глюкагоновыми рецепторами клеток печени. Это приводит к повышению опосредованной G-белком активности аденилатциклазы и увеличению образования цАМФ. Результатом является усиление катаболизма депонированного в печени гликогена (гликогенолиза).[источник не указан 3512 дней] Глюкагон для гепатоцитов служит внешним сигналом о необходимости выделения в кровь глюкозы за счёт распада гликогена (гликогенолиза) или синтеза глюкозы из других веществ — глюконеогенеза. Гормон связывается с рецептором на плазматической мембране и активирует при посредничестве G-белка аденилатциклазу, которая катализирует образование цАМФ из АТФ. Далее следует каскад реакций, приводящий в печени к активации гликогенфосфорилазы и ингибированию гликогенсинтазы. Этот механизм приводит к высвобождению из гликогена глюкозо-1-фосфата, который превращается в глюкозо-6-фосфат. Затем под влиянием глюкозо-6-фосфатазы образуется свободная глюкоза, способная выйти из клетки в кровь. Таким образом, глюкагон в печени, стимулируя распад гликогена, способствует поддержанию глюкозы в крови на постоянном уровне. Глюкагон также активирует глюконеогенез, липолиз и кетогенез в печени.

Глюкагон практически не оказывает действия на гликоген скелетных мышц, по-видимому, из-за практически полного отсутствия в них глюкагоновых рецепторов. Глюкагон вызывает увеличение секреции инсулина из здоровых β-клеток поджелудочной железы и торможение активности инсулиназы. Это является, по-видимому, одним из физиологических механизмов противодействия вызываемой глюкагоном гипергликемии.

Глюкагон оказывает сильное инотропное и хронотропное действие на миокард вследствие увеличения образования цАМФ (то есть оказывает действие, подобное действию агонистов β-адренорецепторов, но без вовлечения β-адренергических систем в реализацию этого эффекта). Результатом является повышение артериального давления, увеличение частоты и силы сердечных сокращений.

В высоких концентрациях глюкагон вызывает сильное спазмолитическое действие, расслабление гладкой мускулатуры внутренних органов, в особенности кишечника, не опосредованное аденилатциклазой.

Глюкагон участвует в реализации реакций типа «бей или беги», повышая доступность энергетических субстратов (в частности, глюкозы, свободных жирных кислот, кетокислот) для скелетных мышц и усиливая кровоснабжение скелетных мышц за счёт усиления работы сердца. Кроме того, глюкагон повышает секрецию катехоламинов мозговым веществом надпочечников и повышает чувствительность тканей к катехоламинам, что также благоприятствует реализации реакций типа «бей или беги».

Regulation of glycogen metabolism glucagon.svg

Примечания[править | править код]

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000115263 - Ensembl, May 2017
  2. Human PubMed Reference: National Center for Biotechnology Information, U.S. National Library of Medicine.
  3. C. P. Kimball, John R. Murlin. Водные экстракты поджелудочной железы III. Некоторые реакции преципитации инсулина (англ.) = Aqueous extracts of pancreas III. Some precipitation reactions of insulin // J. Biol. Chem.. — Рочестер (Нью-Йорк), 1923. — 5 September (vol. 58, iss. 1). — P. 337–348. Архивировано 28 ноября 2016 года.