Гомотопические группы

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Гомотопи́ческие гру́ппы — одно из основных понятий алгебраической топологии.

Определение[править | править вики-текст]

Пусть  — топологическое пространство, ;  — единичный куб, то есть , и  — граница этого куба, то есть множество точек куба такое, что или 1 для некоторого . Множество гомотопических классов непрерывных отображений , для которых обозначается (причём переходит в точку при всех отображениях и гомотопиях). На этом множестве можно определить умножение элементов следующим образом:

, где

, если

, если

Так как на границе куба , то умножение определено корректно. Легко проверить, что зависит только от гомотопического класса и . Это умножение удовлетворяет всем аксиомам группы. В случае мы имеем общеизвестное умножение замкнутых путей и, следовательно, является фундаментальной группой. При n>1 называются высшими гомотопическими группами.

Непрерывному отображению пространств соответствует гомоморфизм , причём это соответствие, как говорят, функториально, то есть произведению непрерывных отображений соответствует произведение гомоморфизмов гомотопических групп , а тождественному отображению соответствует тождественный гомоморфизм . Если отображение гомотопно , то .

Зависимость от начальной точки[править | править вики-текст]

В отличие от гомологических групп в определение гомотопических групп входит выделенная точка . На самом деле в случае линейно связных пространств эти группы изоморфны, хотя в общем случае канонического изоморфизма не существует.

Абелевость высших гомотопических групп[править | править вики-текст]

В то время как фундаментальная группа в общем случае неабелева, для всех n>1 абелевы, то есть . Наглядное доказательство этого факта можно видеть на следующем рисунке (светло-синие области отображаются в точку ):

Абелевость высших гомотопических групп

Относительные гомотопические группы и точная гомотопическая последовательность[править | править вики-текст]

Относительные гомотопические группы определяются для пространства , его подпространства и выделенной точки . Пусть  — единичный куб (),  — граница этого куба, a  — грань куба, определяемая уравнением . Множество гомотопических классов непрерывных отображений , для которых и на остальных гранях обозначается (причём переходит в , а в точку при всех отображениях и гомотопиях).

Точно так же, как и раньше можно доказать что при это множество образует группу — относительную гомотопическую группу порядка . Если то предыдущий рисунок доказывает, что  — абелева. (При n=2 доказательство не проходит, так как точки могут переходить в точки , отличные от ).

Вложение индуцирует гомоморфизм , а вложение (здесь следует понимать как ), индуцирует гомоморфизм . Любой элемент определяется отображением , которое, в частности, переводит в , причём на f тождественно равно , определяя элемент из . Таким образом мы получаем отображение , которое является гомоморфизмом. Мы имеем следующую последовательность групп и гомоморфизмов:

Эта последовательность является точной, то есть образ любого гомоморфизма совпадает с ядром следующего гомоморфизма. Отсюда в случае, когда для всех , граничный гомоморфизм будет изоморфизмом.

История[править | править вики-текст]

Фундаментальная группа была введена создателем топологии А. Пуанкаре, высшие гомотопические группы — В. Гуревичем. Несмотря на простоту их определения, вычисление конкретных групп (даже для таких простых пространств, как сферы Sn) часто является очень трудной задачей, причём более-менее общие методы были получены только начиная с середины XX века.

Литература[править | править вики-текст]

  • Дубровин Б. А., Новиков С. П., Фоменко А. Т. Современная геометрия: Методы и приложения. — М.: Наука, 1979
  • Рохлин В. А., Фукс Д. Б. Начальный курс топологии. Геометрические главы. — М.: Наука, 1977
  • Свитцер Р. М. Алгебраическая топология — гомотопии и гомологии. — М.: Наука, 1985
  • Спеньер Э. Алгебраическая топология. — М.: Мир, 1971
  • Фоменко А. Т., Фукс Д. Б. Курс гомотопической топологии. — М.: Наука, 1989