Группа вращений

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Группа вращения (группа поворотов) в механике и геометрии — набор всех вращений вокруг начала координат в трёхмерном евклидовом пространстве . По определению, вращение вокруг начала координат — линейное преобразование, которое сохраняет длину векторов, а также сохраняет ориентацию (правую и левую тройку векторов). Группа вращений изоморфна группе вещественных ортогональных матриц с определителем 1 (называемой специальной ортогональной группой размерности 3 — ).

Иногда группами вращений называют все специальные ортогональные группы (в обобщении до пространств ).

Свойства[править | править вики-текст]

  • Группа вращений некоммутативна.
  • Группа вращений является группой Ли.
  • Группа диффеоморфна проективному пространству размерности 3. По теореме вращения Эйлера, любое вращение можно задать прямой (осью вращения, заданной единичным вектором ), проходящей через центр координат, и углом . Можно было бы сопоставить каждому вращению вектор и тем самым отождествить элементы группы вращения с точками шара радиуса . Однако, такое сопоставление не было бы биективным, так как углам и соответствует одно и то же вращение. Поэтому, отождествив диаметрально противоположные точки на границе шара, получим проективное пространство.
  • Универсальная накрывающая группы является специальной унитарной группой , или, что то же самое, группой единичных по модулю кватернионов (действующих на касательном пространстве к единичной сфере сопряжениями). При этом накрытие двулистно.

Литература[править | править вики-текст]

  • Винберг Э. Б. Курс алгебры. — 3-е изд. — М.: Факториал Пресс, 2002. — 544 с. — 3000 экз. — ISBN 5-88688-060-7.
  • Богополский О. В. Введение в теорию групп. — М.: Москва-Ижевск: ИКИ, 2002. — 148 с. — ISBN 5-93972-165-6.

См. также[править | править вики-текст]