Двойное векторное произведение

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Двойно́е ве́кторное произведе́ние (другое название: тройное векторное произведение) векторов  — векторное произведение вектора на векторное произведение векторов и

В литературе этот тип произведения трёх векторов называется как тройным[1] (по числу векторов), так и двойным[2] (по числу операций умножения).

Свойства[править | править вики-текст]

Формула Лагранжа[править | править вики-текст]

Для двойного векторного произведения справедлива формула Лагранжа,

которую можно запомнить по мнемоническому правилу «бац минус цаб».

Тождество Якоби[править | править вики-текст]

Для двойного векторного произведения выполняется тождество Якоби

которое доказывается раскрытием скобок по формуле Лагранжа

Примечания[править | править вики-текст]

  1. См., например, Weisstein, Eric W. Vector Triple Product (англ.) на сайте Wolfram MathWorld..
  2. См., например, М. Я. Выгодский, Справочник по высшей математике, М., 1977, стр. 156.

См. также[править | править вики-текст]