Джеймс Уэбб (телескоп)

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
Космический телескоп имени Джеймса Уэбба
Webb Space Telescope.jpg
Организация: Соединённые Штаты Америки NASA
Европа ESA
Канада CSA
Главные подрядчики: Соединённые Штаты Америки Northrop Grumman
Соединённые Штаты Америки Ball Aerospace
Волновой диапазон: 0,6—28 мкм (части видимого и инфракрасного)
Местонахождение: точка Лагранжа L2 системы Солнце — Земля (1,5 млн км от Земли в противоположную Солнцу сторону)
Дата запуска: не ранее мая 2020 года[1]
Место запуска: Гвиана (департамент Франции) Куру
Средство вывода на орбиту: Ариан-5
Продолжительность: 5—10 лет
Дата схода с орбиты: около 2024
Масса: 6,2 тонны
Диаметр: около 6,5 м
Площадь собирающей
поверхности:
около 25 м²
Фокусное расстояние: 131,4 м
Научные инструменты
  • MIRI
прибор среднего инфракрасного диапазона
  • NIRCam
камера ближнего инфракрасного диапазона
  • NIRSpec
спектрограф ближнего инфракрасного диапазона
  • FGS/NIRISS
датчик точного наведения с устройством формирования изображения в ближнем инфракрасном диапазоне и бесщелевым спектрографом
Сайт: www.jwst.nasa.gov
Схема пяти лагранжевых точек в системе Солнце — Земля. JWST будет размещён в точке Лагранжа L2

Космический телескоп имени Джеймса Уэбба (англ. James Webb Space Telescope, JWST) — орбитальная инфракрасная обсерватория, которая предположительно заменит космический телескоп «Хаббл».

Первоначально назывался «Космический телескоп нового поколения» (англ. Next-generation space telescope, NGST). В 2002 году переименован в честь второго руководителя НАСА Джеймса Уэбба (1906—1992), возглавлявшего агентство в 1961—1968 годах.

«Джеймс Уэбб» будет обладать составным зеркалом 6,5 метров в диаметре[прим. 1] с площадью собирающей поверхности 25 м², скрытым от инфракрасного излучения со стороны Солнца и Земли тепловым экраном[прим. 2]. Телескоп будет размещён на гало-орбите в точке Лагранжа L2 системы Солнце — Земля.

Проект представляет собой результат международного сотрудничества 17 стран, во главе которых стоит NASA, со значительным вкладом Европейского и Канадского космических агентств.

Текущие планы предусматривают, что телескоп будет запущен с помощью ракеты «Ариан-5» в марте 2021 года[2]. В этом случае первые научные исследования начнутся осенью 2021 года. Срок работы телескопа составит не менее пяти лет.

Задачи[править | править код]

15 июня 2017 НАСА и ЕКА опубликовали список первых целей в работе телескопа, включающие свыше 2100 наблюдений. Ими стали планеты и малые тела Солнечной системы, экзопланеты и протопланетные диски, галактики и скопления галактик, а также квазары[3][4].

Астрофизика[править | править код]

Первичными задачами JWST являются: обнаружение света первых звёзд и галактик, сформированных после Большого взрыва, изучение формирования и развития галактик, звёзд, планетных систем и происхождения жизни. Также «Уэбб» сможет рассказать о том, когда и где началась реионизация Вселенной и что её вызвало[5].

Экзопланетология[править | править код]

Телескоп позволит обнаруживать относительно холодные экзопланеты с температурой поверхности до 300 К (что практически равно температуре поверхности Земли), находящиеся дальше 12 а. е. от своих звёзд, и удалённые от Земли на расстояние до 15 световых лет. В зону подробного наблюдения попадут более двух десятков ближайших к Солнцу звезд. Благодаря JWST ожидается настоящий прорыв в экзопланетологии — возможностей телескопа будет достаточно не только для того, чтобы обнаруживать сами экзопланеты, но даже спутники и спектральные линии этих планет (что будет являться недостижимым показателем ни для одного наземного и космического телескопа до 2025 года, когда в строй будет введен Европейский чрезвычайно большой телескоп с диаметром зеркала в 39,3 м)[6]. Для поиска экзопланет будут также использованы данные, которые получил телескоп «Кеплер» начиная с 2009 года. Однако возможностей телескопа будет недостаточно для получения изображений найденных экзопланет. Такая возможность появится не раньше середины 2030-х годов, когда будет запущен телескоп-наследник «Джеймса Уэбба» — ATLAST[7].

Водные миры Солнечной системы[править | править код]

Инфракрасные инструменты телескопа будут использованы для изучения водных миров Солнечной системы — спутника Юпитера Европы и спутника Сатурна Энцелада. Инструмент NIRSpec будет использован для поиска биосигнатур (метан, метанол, этан) в гейзерах обоих спутников[8].

Инструмент NIRCam сможет получить изображения Европы в высоком разрешении, которые будут использованы для изучения её поверхности и поиска регионов с гейзерами и высокой геологической активностью. Состав зафиксированных гейзеров будет проанализирован с помощью инструментов NIRSpec и MIRI. Данные, полученные в ходе этих исследований, будут также использованы при исследовании Европы зондом Europa Clipper.

Для Энцелада, ввиду его удаленности и малых размеров, получить изображения в высоком разрешении не удастся, однако возможности телескопа позволят провести анализ молекулярного состава его гейзеров.

История[править | править код]

Изменение планируемой даты запуска и бюджета
Год Планируемая
дата запуска
Планируемый
бюджет
(млрд долларов)
1997 2007[9] 0,5[9]
1998 2007[10] 1[11]
1999 2007-2008[12] 1[11]
2000 2009[13] 1,8[11]
2002 2010[14] 2,5[11]
2003 2011[15] 2,5[11]
2005 2013 3[16]
2006 2014 4,5[17]
2008 2014 5,1[18]
2010 не раньше сентября 2015 ≥6,5[19]
2011 2018 8,7[20]
2013 2018 8,8[21]
2017 весна 2019[22] 8,8
2018 не раньше марта 2020[23] ≥8,8
2018 30 марта 2021[24] 9,66[2]

Изначально запуск намечался на 2007 год, в дальнейшем переносился несколько раз (см. таблицу). Первый сегмент зеркала был установлен на телескоп лишь в конце 2015 года, а полностью главное составное зеркало было собрано только в феврале 2016 года. По данным на весну 2018 года, планируемая дата запуска была сдвинута на 30 марта 2021 года[2].

Финансирование[править | править код]

Стоимость проекта тоже неоднократно увеличивалась. В июне 2011 года стало известно, что стоимость телескопа превысила изначальные расчёты по меньшей мере в четыре раза. В бюджете НАСА, предложенном в июле 2011 года конгрессом, предполагалось прекращение финансирования строительства телескопа[25] из-за плохого управления и превышения бюджета программы[26][27], но в сентябре того же года бюджет был пересмотрен, и проект сохранил финансирование[28]. Окончательное решение о продолжении финансирования было принято сенатом 1 ноября 2011 года.

В 2013 году на постройку телескопа было выделено 626,7 млн долларов.

К весне 2018 года стоимость проекта возросла до 9,66 млрд долларов[2].

Изготовление оптической системы[править | править код]

Проблемы[править | править код]

Чувствительность телескопа и его разрешающая способность напрямую связаны с размером площади зеркала, которое собирает свет от объектов. Учёные и инженеры определили, что минимальный диаметр главного зеркала должен быть 6,5 метра, чтобы измерить свет от самых далёких галактик. Простое изготовление зеркала, подобного зеркалу телескопа «Хаббл», но большего размера, было неприемлемо, так как его масса была бы слишком большой, чтобы можно было запустить телескоп в космос. Команде учёных и инженеров необходимо было найти решение, чтобы новое зеркало имело 1/10 массы зеркала телескопа «Хаббл» на единицу площади[29].

Разработка и испытания[править | править код]

Зеркало «Хаббла» (слева) и «Уэбба» (справа) в одном масштабе

НАСА приступили к исследованию новых способов создания зеркала для телескопа. Для этого была создана программа Advanced Mirror System Demonstrator (AMSD), по сути являющаяся 4-летним сотрудничеством между НАСА, Национальным управлением военно-космической разведки США и Военно-воздушными силами США. На основе исследований AMSD были построены и испытаны два тестовых зеркала. Одно из них было сделано из бериллия компанией Ball Aerospace & Technologies, другое — построено фирмой Kodak (ныне — ITT) из специального стекла.

Группа экспертов протестировала оба зеркала, чтобы определить, насколько хорошо они выполняют свою задачу, сколько стоят и насколько легко (или трудно) было бы построить полноразмерное, 6,5-метровое зеркало. Эксперты рекомендовали зеркало из бериллия для телескопа Джеймса Уэбба по нескольким причинам, одна из которых — бериллий сохраняет свою форму при криогенных температурах. На основе рекомендаций экспертов компания Northrop Grumman выбрала зеркало из бериллия, и Центр космических полётов Годдарда утвердил это решение.

Также было решено сделать зеркало не цельным, а из сегментов, которые будут раздвинуты на орбите, так как габариты цельного зеркала не позволили бы его разместить в ракете-носителе «Ариан-5». Размер каждого из 18 шестигранных сегментов зеркала составляет 1,32 метра от ребра до ребра, масса непосредственно самого́ зеркала в каждом сегменте — 20 кг, а масса всего сегмента в сборе (вместе с приводами точного позиционирования и т. д.) — 40 кг.

Настроенные одинаковым образом зеркала выделены одним цветом.

Шестиугольная форма сегментов была выбрана не случайно. Она обладает высоким коэффициентом заполнения и имеет симметрию шестого порядка. Высокий коэффициент заполнения означает, что сегменты подходят друг к другу без зазоров. Благодаря симметрии 18 сегментов зеркала можно разделить на три группы, в каждой из которых настройки сегментов идентичны. Наконец, желательно, чтобы зеркало имело форму, близкую к круговой — для максимально компактного фокусирования света на детекторах. Овальное зеркало, например, дало бы вытянутое изображение, а квадратное послало бы много света из центральной области[29].

Производство[править | править код]

Для зеркала «Уэбба» используется особый тип бериллия. Он представляет собой мелкий порошок. Порошок помещается в контейнер из нержавеющей стали и прессуется в плоскую форму. После того как стальной контейнер удалён, кусок бериллия разрезается пополам, чтобы сделать две заготовки зеркала около 1,3 метра в поперечнике. Каждая заготовка зеркала используется для создания одного сегмента.

Процесс формирования зеркала начинается с вырезания излишков материала на оборотной стороне бериллиевой заготовки таким образом, что остаётся тонкая рёберная структура. Передняя же сторона каждой заготовки сглаживается с учётом положения сегмента в большом зеркале.

Затем поверхность каждого зеркала стачивается для придания формы, близкой к расчётной. После этого зеркало тщательно сглаживают и полируют. Этот процесс повторяется до тех пор, пока форма сегмента зеркала не станет близка к идеальной. Далее сегмент охлаждается до температуры −240 °C, и с помощью лазерного интерферометра производятся измерения размеров сегмента. Затем зеркало с учётом полученной информации проходит окончательную полировку.

По завершению обработки сегмента передняя часть зеркала покрывается тонким слоем золота для лучшего отражения инфракрасного излучения в диапазоне 0,6—29 мкм[30], и готовый сегмент проходит повторные испытания при криогенных температурах[29].

Тестирование[править | править код]

10 июля 2017 года — начало финального криогенного теста телескопа при температуре 37 К в Космическом центре имени Джонсона в Хьюстоне, который продлился 100 дней[31].

Помимо испытаний в Хьюстоне аппарат прошел серию механических проверок в Центре космических полётов Годдарда, которые показали, что он сможет выдержать запуск с помощью тяжелой ракеты-носителя.

В начале февраля 2018 года гигантские зеркала и различные приборы доставлены на предприятие компании Northrop Grumman в Редондо-Бич для последнего этапа сборки телескопа. Там уже идет сооружение двигательного модуля телескопа и его солнцезащитного экрана. Когда вся конструкция будет собрана, её отправят на морском судне из Калифорнии во Французскую Гвиану[32].

Оборудование[править | править код]

JWST будет иметь следующие научные инструменты для проведения исследования космоса:

  • Камера ближнего инфракрасного диапазона (англ. Near-Infrared Camera);
  • Прибор для работы в среднем диапазоне инфракрасного излучения (англ. Mid-Infrared Instrument, MIRI);
  • Спектрограф ближнего инфракрасного диапазона (англ. Near-Infrared Spectrograph, NIRSpec);
  • Датчик точного наведения (англ. Fine Guidance Sensor, FGS) и устройство формирования изображения в ближнем инфракрасном диапазоне и бесщелевой спектрограф (англ. Near InfraRed Imager and Slitless Spectrograph, NIRISS).

Камера ближнего инфракрасного диапазона[править | править код]

Камера ближнего инфракрасного диапазона является основным блоком формирования изображения «Уэбба» и будет состоять из массива ртутно-кадмиево-теллуровых[en] детекторов[33][34]. Рабочий диапазон прибора составляет от 0,6 до 5 мкм. Его разработка поручена Аризонскому университету и Центру продвинутых технологий компании Lockheed Martin.

В задачи прибора входят:

Прибор оснащён коронографом, который позволяет делать снимки слабых объектов близ ярких источников. С помощью коронографа астрономы надеются определить характеристики экзопланет, обращающихся вокруг ближайших звёзд.

Спектрограф ближнего инфракрасного диапазона[править | править код]

Спектрограф ближнего инфракрасного диапазона будет анализировать спектр источников, что позволит получать информацию как о физических свойствах исследуемых объектов (например, температуре и массе), так и об их химическом составе. Инструмент способен делать спектроскопию среднего разрешения в диапазоне длин волн 1мкм и низкого разрешения с длиной волны 0,6мкм[35].

Многие объекты, которые «Уэбб» будет изучать, излучают настолько мало света, что телескопу для анализа спектра необходимо собирать свет от них в течение сотен часов. Чтобы изучить тысячи галактик за 5 лет работы телескопа, спектрограф был разработан с возможностью наблюдения за 100 объектами на площади неба 3×3 угловых минуты[35] одновременно. Для этого учёные и инженеры Годдарда разработали новую технологию микрозатворов для управления светом, входящим в спектрограф.

Суть технологии, позволяющей получать 100 одновременных спектров, заключается в микроэлектромеханической системе, именуемой «массив микрозатворов» (англ. microshutter array). У ячеек микрозатворов спектрографа NIRSpec есть крышки, которые открываются и закрываются под действием магнитного поля. Каждая ячейка размером 100 на 200 мкм[36] индивидуально управляется и может быть открытой или закрытой, предоставляя или, наоборот, блокируя часть неба для спектрографа, соответственно.

Именно эта регулируемость позволяет прибору делать спектроскопию такого количества объектов одновременно. Поскольку объекты, которые будет исследовать NIRSpec, находятся далеко и тусклы, инструмент нуждается в подавлении излучения от более близких ярких источников. Микрозатворы работают подобно тому, как люди смотрят искоса, чтобы сосредоточиться на объекте, блокируя нежелательный источник света.

Прибор уже разработан и в данный момент проходит испытания в Европе[37].

Прибор для работы в среднем диапазоне инфракрасного излучения[править | править код]

Прибор для работы в среднем диапазоне инфракрасного излучения (528 мкм[38]) состоит из камеры с датчиком, имеющим разрешение 1024×1024 пикселя[39], и спектрографа.

MIRI состоит из трёх массивов мышьяко-кремниевых детекторов. Чувствительные детекторы этого прибора позволят увидеть красное смещение далёких галактик, формирование новых звёзд и слабо видимые кометы, а также объекты в поясе Койпера. Модуль камеры предоставляет возможность съёмки объектов в широком диапазоне частот с большим полем зрения, а модуль спектрографа обеспечивает спектроскопию среднего разрешения с меньшим полем зрения, что позволит получать подробные физические данные об удалённых объектах.

Номинальная рабочая температура для MIRIК. Такая температура не может быть достигнута использованием только пассивной системы охлаждения. Вместо этого, охлаждение производится в два этапа: установка предварительного охлаждения на основе пульсационной трубы охлаждает прибор до 18 К, затем теплообменник с адиабатическим дросселированием (эффект Джоуля — Томсона) понижает температуру до 7 К.

MIRI разрабатывает группа под названием MIRI Consortium, состоящая из ученых и инженеров из стран Европы, команды сотрудников Лаборатории реактивного движения в Калифорнии и учёных из ряда институтов США[40].

FGS/NIRISS[править | править код]

Датчик точного наведения (FGS) и устройство формирования изображения в ближнем инфракрасном диапазоне и бесщелевой спектрограф (NIRISS) будут упакованы вместе в «Уэббе», но по сути это два разных устройства[41][42]. Оба устройства разрабатываются Канадским космическим агентством, и они уже получили прозвище «канадские глаза» по аналогии с «канадской рукой». Этот инструмент уже прошел интегрирование со структурой ISIM в феврале 2013 года.

Датчик точного наведения[править | править код]

Датчик точного наведения (FGS) позволит «Уэббу» производить точное наведение, чтобы он мог получать изображения высокого качества.

Камера FGS может формировать изображение из двух смежных участков неба размером 2,4×2,4 угловых минуты каждый, а также считывать информацию 16 раз в секунду с небольших групп пикселей размером 8×8, чего достаточно для нахождения соответствующей опорной звезды с 95-процентной вероятностью в любой точке неба, включая высокие широты.

Основные функции FGS включают в себя:

  • получение изображения для определения положения телескопа в пространстве;
  • получение предварительно выбранных опорных звёзд;
  • обеспечение системы управления положением англ. Attitude Control System измерениями центроида опорных звёзд со скоростью 16 раз в секунду.

Во время вывода на орбиту телескопа FGS также будет сообщать об отклонениях при развёртывании главного зеркала.

Устройство формирования изображения в ближнем инфракрасном диапазоне и бесщелевой спектрограф[править | править код]

Устройство формирования изображения в ближнем инфракрасном диапазоне и бесщелевой спектрограф (NIRISS) работают в диапазоне 0,85,0 мкм и является специализированным инструментом с тремя основными режимами, каждый из которых работает с отдельным диапазоном.

NIRISS будет использоваться для выполнения следующих научных задач:

См. также[править | править код]

Примечания[править | править код]

Примечания
  1. Для сравнения, диаметр зеркала «Хаббла» — 2,4 метра
  2. Защитный экран позволяет поддерживать температуру зеркала и приборов ниже 50 K (−220 °C). Низкая температура необходима для работы телескопа в инфракрасном диапазоне излучения.
Сноски
  1. NASA delays James Webb Space Telescope launch to NET May 2020
  2. 1 2 3 4 NASA Completes Webb Telescope Review, Commits to Launch in Early 2021 (англ.). NASA (27 June 2018). Проверено 28 июня 2018.
  3. Icy Moons, Galaxy Clusters, and Distant Worlds Among Selected Targets for James Webb Space Telescope (15.06.2017).
  4. https://nplus1.ru/news/2017/06/16/webb-telescope (16.06.2017).
  5. Webb Science: The End of the Dark Ages: First Light and Reionization. НАСА. Проверено 18 марта 2013. Архивировано 21 марта 2013 года.
  6. Щепотка бесконечности (25.03.2013). Архивировано 4 апреля 2013 года.
  7. «Кеплер» нашел десять новых возможных двойников Земли (19.06.2017).
  8. NASA’s Webb Telescope Will Study Our Solar System’s “Ocean Worlds” (24.08.2017).
  9. 1 2 Berardelli, Phil. Next Generation Space Telescope will peer back to the beginning of time and space, CBS (27 October 1997).
  10. The Next Generation Space Telescope (NGST). University of Toronto (27 November 1998).
  11. 1 2 3 4 5 Reichhardt, Tony (March 2006). «US astronomy: Is the next big thing too big?» 440 (7081): 140–143. DOI:10.1038/440140a. Bibcode2006Natur.440..140R.
  12. Cosmic Ray Rejection with NGST.
  13. MIRI spectrometer for NGST. Архивировано 27 сентября 2011 года.
  14. NGST Weekly Missive (25 April 2002).
  15. NASA Modifies James Webb Space Telescope Contract (12 November 2003).
  16. Problems for JWST (21 May 2005).
  17. (9 March 2006) «Refocusing NASA's vision» 440 (7081). DOI:10.1038/440127a. Bibcode2006Natur.440..127..
  18. Cowen, Ron Webb Telescope Delayed, Costs Rise to $8 Billion. ScienceInsider (25 August 2011). Архивировано 14 января 2012 года.
  19. Котляр, Павел Орбитальный телескоп не уложился ни в бюджет, ни в сроки. Infox.ru (11 ноября 2010). Проверено 24 декабря 2010. Архивировано 8 февраля 2012 года.
  20. Amos, Jonathan. JWST price tag now put at over $8bn, BBC (22 August 2011).
  21. Moskowitz, Clara. NASA Assures Skeptical Congress That the James Webb Telescope Is on Track. Scientific American (30 March 2015). Проверено 29 января 2017.
  22. NASA’s James Webb Space Telescope to be Launched Spring 2019. NASA (September 28, 2017).
  23. NASA Delays Launch of James Webb Space Telescope to 2020, Space.com.
  24. NASA Completes Webb Telescope Review, Commits to Launch in Early 2021. Felicia Chou / Natasha Pinol. NASA (27 June 2018). Проверено 28 июня 2018.
  25. Правительство США пожалело денег на преемника «Хаббла». lenta.ru (07.07.2011). Архивировано 20 февраля 2012 года.
  26. Appropriations Committee Releases the Fiscal Year 2012 Commerce, Justice, Science Appropriations. The US House of Representatives. Архивировано 20 февраля 2012 года.
  27. Проект телескопа им. Джеймса Уэбба оказался под угрозой отмены
  28. «Джеймсу Уэббу» дали шанс на спасение
  29. 1 2 3 The Primary Mirror (англ.). НАСА. Проверено 15 марта 2013. Архивировано 16 марта 2013 года.
  30. Mirrors (англ.). James Webb Space Telescope. Институт исследований космоса с помощью космического телескопа. Проверено 18 апреля 2014. Архивировано 21 марта 2013 года.
  31. Началось финальное криогенное тестирование Космического телескопа Джеймса Уэбба (18.07.2017).
  32. Зеркала и другие элементы телескопа James Webb доставлены в Калифорнию для сборки (08.02.2018).
  33. Near Infrared Camera (NIRCam) (англ.). НАСА. Проверено 16 марта 2013. Архивировано 21 марта 2013 года.
  34. Near Infrared Camera (англ.). James Webb Space Telescope. Институт исследований космоса с помощью космического телескопа (21 October 2013). Проверено 18 апреля 2014.
  35. 1 2 Near-Infrared Spectrograph (NIRSpec) (англ.). James Webb Space Telescope. Институт исследований космоса с помощью космического телескопа (January 2014). Проверено 18 апреля 2014.
  36. Microshutters (англ.). НАСА. Проверено 17 марта 2013. Архивировано 21 марта 2013 года.
  37. Near Infrared Spectrograph (NIRSpec) (англ.). НАСА. Проверено 16 марта 2013. Архивировано 21 марта 2013 года.
  38. http://www.stsci.edu/jwst/instruments/miri/docarchive/miri-pocket-guide.pdf
  39. Mid Infrared Instrument
  40. Mid-Infrared Instrument (MIRI) (англ.). НАСА. Проверено 16 марта 2013. Архивировано 21 марта 2013 года.
  41. Fine Guidance Sensor/Near InfraRed Imager and Slitless Spectrograph (FGS/NIRISS) (англ.). НАСА. Проверено 16 марта 2013. Архивировано 21 марта 2013 года.
  42. FGS - Fine Guidance Sensor (англ.). James Webb Space Telescope. Институт исследований космоса с помощью космического телескопа (1 March 2013). Проверено 18 апреля 2014. Архивировано 21 марта 2013 года.

Ссылки[править | править код]