Динамический хаос

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Динами́ческий ха́ос — явление в теории динамических систем, при котором поведение нелинейной системы выглядит случайным, несмотря на то, что оно определяется детерминистическими законами. В качестве синонима часто используют название детерминированный хаос; оба термина полностью равнозначны и используются для указания на существенное отличие хаоса как предмета научного изучения в синергетике от хаоса в обыденном смысле.

Основные сведения[править | править вики-текст]

Причиной появления хаоса является неустойчивость (чувствительность) по отношению к начальным условиям и параметрам: малое изменение начального условия со временем приводит к сколь угодно большим изменениям динамики системы.

Динамику, которая чувствительна к малейшим изменениям начальных условий системы, из которых начинается её развитие, изменение, и в которой эти малейшие отклонения со временем многократно приумножаются, затрудняя предсказание будущих состояний системы, часто и называют хаотичной.

К примеру, мы знаем траекторию движения механической системы, если даны начальные условия. Если бы система была устойчива, не хаотична, то изменив немного начальные условия, из которых начнется движение, то и новая траектория бы несильно отличалась от прежней, возможно даже, что новая траектория движения со временем совпала бы с прежней. Но если система была бы хаотичной, неустойчивой, то поначалу старая и новая траектории могли бы и быть близки, однако со временем бы траектории стали совершенно различны, то есть система бы проявила высокую чувствительность к начальным данным задачи о движении.

Так как начальное состояние физической системы не может быть задано абсолютно точно (например, из-за ограничений измерительных инструментов), то всегда необходимо рассматривать некоторую (пусть и очень маленькую) область начальных условий. При движении в ограниченной области пространства экспоненциальная расходимость с течением времени близких орбит приводит к перемешиванию начальных точек по всей области.

После такого перемешивания уже практически не имеет смысла говорить о координате конкретной частицы, более целесообразным является переход к статистическому описанию процесса, то есть к определению вероятности нахождения частицы в некоторой точке.

Примерами хаотических динамических систем могут являться подкова Смейла и преобразование пекаря.

Обратным, в некотором смысле, к динамическому хаосу является динамическое равновесие и явления гомеостаза.

См. также[править | править вики-текст]

Литература[править | править вики-текст]

Ссылки[править | править вики-текст]