Дисперсия случайной величины

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Диспе́рсия случа́йной величины́ — мера разброса данной случайной величины, то есть её отклонения от математического ожидания. Обозначается в русской литературе и (англ. variance) в зарубежной. В статистике часто употребляется обозначение или .

Квадратный корень из дисперсии, равный , называется среднеквадрати́ческим отклоне́нием, станда́ртным отклоне́нием или стандартным разбросом. Стандартное отклонение измеряется в тех же единицах, что и сама случайная величина, а дисперсия измеряется в квадратах этой единицы измерения.

Из неравенства Чебышёва следует, что вероятность того, что случайная величина отстоит от своего математического ожидания более чем на стандартных отклонений, составляет менее . В специальных случаях оценка может быть усилена. Так, например, как минимум в 95 % случаев случайная величина, имеющая нормальное распределение, удалена от её среднего не более чем на два стандартных отклонения, а в примерно 99,7 % — не более чем на три.

Определение[править | править вики-текст]

Пусть  — случайная величина, определённая на некотором вероятностном пространстве. Тогда дисперсией называется

где символ обозначает математическое ожидание[1][2].

Замечания[править | править вики-текст]

  • Если случайная величина дискретная, то
  • Если случайная величина непрерывна, то:
  • В силу линейности математического ожидания, справедлива формула:
  • Дисперсия является вторым центральным моментом случайной величины;
  • Дисперсия может быть бесконечной.
  • Дисперсия может быть вычислена с помощью производящей функции моментов :
  • Дисперсия целочисленной случайной величины может быть вычислена с помощью производящей функции последовательности.
  • Удобная формула для вычисления смещённой оценки дисперсии (англ. biased sample variance) случайной величины по последовательности  — реализаций этой случайной величины:
    где  — смещённая оценка . - эта оценка мат. ожидания является несмещенной. Это указано на странице Несмещённая оценка.
    Для получения несмещённой оценки дисперсии (англ. unbiased sample variance) правую часть вышеуказанного равенства необходимо умножить на . Несмещённая оценка обозначается :

Свойства[править | править вики-текст]

  • Дисперсия любой случайной величины неотрицательна:
  • Если дисперсия случайной величины конечна, то конечно и её математическое ожидание;
  • Если случайная величина равна константе, то её дисперсия равна нулю: Верно и обратное: если то почти всюду;
  • Дисперсия суммы двух случайных величин равна:
    , где  — их ковариация;
  • Для дисперсии произвольной линейной комбинации нескольких случайных величин имеет место равенство:
    , где ;
  • В частности, для любых независимых или некоррелированных случайных величин, так как их ковариации равны нулю;

Пример[править | править вики-текст]

Пусть случайная величина имеет стандартное непрерывное равномерное распределение на то есть её плотность вероятности задана равенством

Тогда математическое ожидание квадрата случайной величины

и математическое ожидание случайной величины

Тогда дисперсия случайной величины

См. также[править | править вики-текст]

Примечания[править | править вики-текст]

  1. Колмогоров А. Н. Глава IV. Математические ожидания; §3. Неравенство Чебышева // Основные понятия теории вероятностей. — 2-е изд. — М.: Наука, 1974. — С. 63—65. — 120 с.
  2. Боровков А. А. Глава 4. Числовые характеристики случайных величин; §5. Дисперсия // Теория вероятностей. — 5-е изд. — М.: Либроком, 2009. — С. 93-94. — 656 с.

Литература[править | править вики-текст]