Единицы измерения ёмкости носителей и объёма информации
Единицы измерения информации служат для измерения различных характеристик, связанных с информацией.
Чаще всего измерение информации касается измерения ёмкости компьютерной памяти (запоминающих устройств) и измерения количества данных, передаваемых по цифровым каналам связи. Реже измеряется количество информации.
Единицы измерения информации
[править | править код]Большой по размеру объём данных может содержать в себе очень малое количество информации. То есть объём данных и количество информации являются разными характеристиками, применяемыми в разных областях, связанных с информацией, но исторически название «количество информации» использовали в значении «объём данных», а для измерения количества информации применяли названия «информационная энтропия» и «ценность информации».
Единицы измерения ёмкости носителей и объёма данных
[править | править код]Применяются для измерения ёмкости носителей информации — запоминающих устройств и для измерения объёмов данных.
Единицы измерения количества информации
[править | править код]Применяются для измерения количества информации в объёме данных. Информационная энтропия
Первичная единица
[править | править код]Первичной характеристикой объёма данных является количество возможных состояний.
Первичной единицей измерения объёма данных является 1 возможное состояние (значение, код).
Вторичные единицы
[править | править код]Вторичной характеристикой объёма данных является разряд.
Ёмкость (объём) одного разряда может быть разной и зависит от основания применённой системы кодирования.
Ёмкости одного разряда в двоичной, троичной и десятичной системах кодирования:
Один двоичный разряд (бит) имеет 2 взаимоисключающих возможных состояния (значения, кода).
Один троичный разряд (трит) имеет 3 взаимоисключающих возможных состояния (значения, кода).
…
Один десятичный разряд (децит) имеет 10 взаимоисключающих возможных состояний (значений, кодов).
…
Третичные единицы
[править | править код]Третичными характеристиками объёма данных являются различные множества разрядов.
Ёмкость множества разрядов равна количеству возможных состояний этого множества разрядов, которое определяется в комбинаторике, равно количеству размещений с повторениями и вычисляется по формуле:
- возможных состояний (кодов, значений)
где
- — количество возможных состояний одного разряда (основание выбранной системы кодирования),
- — количество разрядов в множестве разрядов.
То есть ёмкость множества разрядов представляет собой показательную функцию от количества разрядов с основанием, равным количеству возможных состояний одного разряда.
Пример:
1 байт состоит из 8-ми () двоичных разрядов () и может принимать:
возможных состояний (значений, кодов).
Логарифмические единицы
[править | править код]Когда некоторые величины, в том числе и объём данных, представляют собой показательные функции, то, во многих случаях, удобнее пользоваться не самими величинами, а логарифмами этих величин.
Объём данных тоже можно представлять логарифмически, как логарифм количества возможных состояний[1].
Объём информации (объём данных) — может измеряться логарифмически.[2] Это означает, что когда несколько объектов рассматриваются как один, количество возможных состояний перемножается, а количество информации — складывается. Не важно, идёт речь о случайных величинах в математике, регистрах цифровой памяти в технике или в квантовых системах в физике.
Для объёмов двоичных данных удобнее пользоваться двоичными логарифмами.
- возможных состояния, двоичный разряд = 1 бит
- возможных состояний, двоичных разрядов = 1 Байт (Октет)
- возможных состояния, двоичных разрядов = 1 КилоБайт (КилоОктет)
- возможных состояний, двоичных разрядов = 1 МегаБайт (МегаОктет)
- возможных состояния, двоичных разрядов = 1 ГигаБайт (ГигаОктет)
- возможных состояний, двоичных разрядов = 1 ТераБайт (ТераОктет)
Наименьшее целое число, двоичный логарифм которого целое положительное — это 2. Соответствующая ему единица — бит — является основой исчисления информации в цифровой технике.
Для объёмов троичных данных удобнее пользоваться троичными логарифмами.
- возможных состояния, троичный разряд (трит)
- возможных состояний, троичных разрядов (тритов) = 1 Трайт.
Единица, соответствующая числу 3, трит равна log23≈1,585 бита.
Такая единица как нат (nat), соответствующая натуральному логарифму применяется в инженерных и научных расчётах. В вычислительной технике она практически не применяется, так как основание натуральных логарифмов не является целым числом.
Для объёмов десятичных данных удобнее пользоваться десятичными логарифмами.
- возможных состояний, десятичный разряд = 1 децит
- возможных состояний, десятичных разряда = 1 килодецит.
- возможных состояний, десятичных разрядов = 1 мегадецит.
- возможных состояний, десятичных разрядов = 1 гигадецит.
Единица, соответствующая числу 10, децит равна log210≈3.322 бита.
В проводной технике связи (телеграф и телефон) и радио исторически впервые единица информации получила обозначение бод.
Единицы, производные от бита
[править | править код]В целых количествах двоичных разрядов (битов) количество возможных состояний равно степеням двойки.
Тетрада, полубайт, ниббл
[править | править код]Особое название имеют четыре двоичных разряда (4 бита) — тетрада, полубайт, ниббл, которые вмещают в себя количество информации, содержащейся в одной шестнадцатеричной цифре.
Измерения в байтах | ||||||||
---|---|---|---|---|---|---|---|---|
ГОСТ 8.417—2002 | Приставки СИ | Приставки МЭК | ||||||
Название | Обозначение | Степень | Название | Степень | Название | Обозначение | Степень | |
байт | Б | 100 | — | 100 | байт | B | Б | 20 |
килобайт | Кбайт | 103 | кило- | 103 | кибибайт | KiB | КиБ | 210 |
мегабайт | Мбайт | 106 | мега- | 106 | мебибайт | MiB | МиБ | 220 |
гигабайт | Гбайт | 109 | гига- | 109 | гибибайт | GiB | ГиБ | 230 |
терабайт | Тбайт | 1012 | тера- | 1012 | тебибайт | TiB | ТиБ | 240 |
петабайт | Пбайт | 1015 | пета- | 1015 | пебибайт | PiB | ПиБ | 250 |
эксабайт | Эбайт | 1018 | экса- | 1018 | эксбибайт | EiB | ЭиБ | 260 |
зеттабайт | Збайт | 1021 | зетта- | 1021 | зебибайт | ZiB | ЗиБ | 270 |
йоттабайт | Ибайт | 1024 | йотта- | 1024 | йобибайт | YiB | ЙиБ | 280 |
роннабайт | - | 1027 | ронна- | 1027 | - | - | - | - |
кветтабайт | - | 1030 | кветта- | 1030 | - | - | - | - |
Следующей по порядку популярной единицей информации является 8 бит, или байт (о терминологических тонкостях написано ниже). Именно к байту (а не к биту) непосредственно приводятся все большие объёмы информации, исчисляемые в компьютерных технологиях.
Такие величины как машинное слово и т. п., составляющие несколько байт, в качестве единиц измерения почти никогда не используются.
Килобайт
[править | править код]Для измерения больших ёмкостей запоминающих устройств и больших объёмов информации, имеющих большое количество байтов, служат единицы «килобайт» = [1000] байт и «Кбайт»[3] (кибибайт, kibibyte) = 1024 байт (о путанице десятичных и двоичных единиц и терминов см. ниже). Такой порядок величин имеют, например:
- Сектор диска обычно равен 512 байтам то есть половине Кбайта, хотя для некоторых устройств может быть равен одному или двум кибибайт.
- Классический размер «блока» в файловых системах UNIX равен одному Кбайт (1024 байт).
- «Страница памяти» в процессорах x86 (начиная с модели Intel 80386) имеет размер 4096 байт, то есть 4 Кбайт.
Объём информации, получаемой при считывании дискеты «3,5″ высокой плотности» равен 1440 Кбайт (ровно); другие форматы также исчисляются целым числом Кбайт.
Мегабайт
[править | править код]Единицы «мегабайт» = 1000 килобайт = [1 000 000] байт и «мебибайт»[3] (mebibyte) = 1024 Кбайт = 1 048 576 байт применяются для измерения объёмов носителей информации.
Объём адресного пространства процессора Intel 8086 был равен 1 Мбайт.
Оперативную память и ёмкость CD-ROM меряют двоичными единицами (мебибайтами, хотя их так обычно не называют), но для объёма НЖМД десятичные мегабайты были более популярны.
Современные жёсткие диски имеют объёмы, выражаемые в этих единицах минимум шестизначными числами, поэтому для них применяются гигабайты.
Гигабайт
[править | править код]Единицы «гигабайт» = 1000 мегабайт = [1 000 000] килобайт = [1 000 000 000] байт и «Гбайт»[3] (гибибайт, gibibyte) = 1024 Мбайт = 230 байт измеряют объём больших носителей информации, например жёстких дисков. Разница между двоичной и десятичной единицами уже превышает 7 %.
Размер 32-битного адресного пространства равен 4 Гбайт ≈ 4,295 Мбайт. Такой же порядок имеют размер DVD-ROM и современных носителей на флеш-памяти. Размеры жёстких дисков уже достигают сотен и тысяч гигабайт.
Для исчисления ещё больших объёмов информации имеются единицы терабайт и тебибайт (1012 и 240 байт соответственно), петабайт и пебибайт (1015 и 250 байт соответственно) и т. д.
Что такое «байт»?
[править | править код]В принципе, байт определяется для конкретного компьютера как минимальный шаг адресации памяти, который на старых машинах не обязательно был равен 8 битам (а память не обязательно состоит из битов — см., например: троичный компьютер). В современной традиции, байт часто считают равным восьми битам.
В таких обозначениях как байт (русское) или B (английское) под байтом (B) подразумевается именно 8 бит, хотя сам термин «байт» не вполне корректен с точки зрения теории.
Во французском языке используются обозначения o, Ko, Mo и т. д. (от слова octet) дабы подчеркнуть, что речь идёт именно о 8 битах.
Чему равно «кило»?
[править | править код]Долгое время разнице между множителями 1000 и 1024 старались не придавать большого значения. Во избежание недоразумений следует чётко понимать различие между:
- двоичными кратными единицами, обозначаемыми согласно ГОСТ 8.417-2002 как «Кбайт», «Мбайт», «Гбайт» и т. д. (два в степенях кратных десяти);
- единицами килобайт, мегабайт, гигабайт и т. д., понимаемыми как научные термины (десять в степенях, кратных трём),
эти единицы по определению равны, соответственно, 103, 106, 109 байтам и т. д.
В качестве терминов для «Кбайт», «Мбайт», «Гбайт» и т. д. МЭК предлагает «кибибайт», «мебибайт», «гибибайт» и т. д., однако эти термины критикуются за непроизносимость и не встречаются в устной речи.
В различных областях информатики предпочтения в употреблении десятичных и двоичных единиц тоже различны. Причём, хотя со времени стандартизации терминологии и обозначений прошло уже несколько лет, далеко не везде стремятся прояснить точное значение используемых единиц.
В английском языке для «киби»=1024=210 иногда используют прописную букву K, дабы подчеркнуть отличие от обозначаемой строчной буквой приставки СИ кило. Однако, такое обозначение не опирается на авторитетный стандарт, в отличие от российского ГОСТа касательно «Кбайт».
Вариации
[править | править код]Примечания
[править | править код]- ↑ «логарифм» на answers.com Архивная копия от 22 сентября 2008 на Wayback Machine (англ.)
- ↑ С точки зрения физики, величина информации (как и близкая к ней по смыслу энтропия) безразмерна. На практике, как и при измерении безразмерных углов, пользуются различными практически удобными единицами.
- ↑ 1 2 3 ГОСТ 8.417-2002 «Единицы величин» . Дата обращения: 11 июня 2008. Архивировано 2 февраля 2012 года.
См. также
[править | править код]Для улучшения этой статьи желательно:
|