Задача об упаковке в контейнеры

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Задача об упаковке в контейнеры — NP-трудная комбинаторная задача. Задача заключается в упаковке объектов предопределённой формы в конечное число контейнеров предопределённой формы таким способом, чтобы число использованных контейнеров было наименьшим или количество или объём объектов (которые упаковывают) были наибольшими.

Разновидности и методы решения задач упаковки[править | править вики-текст]

Существует множество разновидностей этой задачи (двумерная упаковка, линейная упаковка, упаковка по весу, упаковка по стоимости и т. п.), которые могут применяться в разных областях, как собственно в вопросе оптимального заполнения контейнеров, загрузки грузовиков с ограничением по весу, созданием резервных копий на съёмных носителях и т. д. Так как задача является NP-трудной, то использование точного переборного алгоритма возможно только при небольших размерностях. Обычно для решения задачи используют эвристические приближённые полиномиальные алгоритмы.

Задача упаковки в одномерные одинаковые контейнеры[править | править вики-текст]

Постановка задачи[править | править вики-текст]

Пусть дано множество контейнеров размера и множество предметов размеров . Надо найти целое число контейнеров и разбиение множества на подмножеств таких, что для всех . Решение называется оптимальным, если минимально. Минимальное далее обозначается OPT.

Упаковка как задача целочисленного программирования[править | править вики-текст]

Задача упаковки в контейнеры может быть сформулирована как задача целочисленного программирования следующим образом:

Минимизировать
при ограничениях

где , если контейнер используется и , если предмет помещён в контейнер .[1]

Приближённые полиномиальные алгоритмы[править | править вики-текст]

Простейшими полиномиальными алгоритмами упаковки являются алгоритмы Best Fit Decreasing — BFD (Наилучший подходящий по убыванию) и First Fit Decreasing — FFD (Первый подходящий по убыванию). Предметы упорядочивают по невозрастанию размеров и последовательно пакуют либо в контейнер, в котором после упаковки останется наименьший свободный объём — BFD, либо в первый контейнер куда он помещается — FFD. Доказано, что эти алгоритмы используют не более

контейнеров[2].

Однако для задачи упаковки существуют и асимптотически ε -оптимальные полиномиальные алгоритмы.

Задача определения, равно ли OPT двум или трем является NP-трудной. Поэтому для любого ε > 0, трудно упаковать предметы в (3/2 − ε)OPT контейнеров. (Если такой полиномиальный алгоритм существует, то за полиномиальное время можно определить разделятся ли n неотрицательных чисел на два множества с одинаковой суммой элементов. Однако известно, что эта проблема NP-трудна.) Следовательно, если P не совпадает с NP, то для задачи упаковки в контейнеры нет алгоритма приближенной схемы полиномиального времени (PTAS). С другой стороны, для всякого ε >0  можно найти решение с не более, чем (1 + ε)OPT + 1 контейнерами за полиномиальное время. Такие алгоритмы относятся к асимптотической PTAS.[3] Но поскольку в оценке сложности этого класса алгоритмов обе константы произвольно зависят от  ε, подобные алгоритмы в отличие от FFD и BFD могут быть практически бесполезными.

Вероятностный подход[править | править вики-текст]

Для некоторого класса вероятностных распределений размеров упаковываемых предметов, включающего функции распределения выпуклые вверх и вниз, существует практический полиномиальный алгоритм упаковки асимптотически оптимальный почти наверное при неограниченном росте числа предметов. Для распределений не входящих в этот класс могут строиться индивидуальные полиномиальные асимптотически оптимальные алгоритмы.[4]

Примечания[править | править вики-текст]

  1. Silvano Martello and Paolo Toth. Knapsack problems. — Chichester, UK: John Wiley and Sons, 1990. — P. 221. — ISBN 0471924202.
  2. Yue, Minyi (1991), A simple proof of the inequality FFD(L) ≤ (11/9)OPT(L) + 1, for all L, for the FFD bin-packing algorithm, "A simple proof of the inequality FFD (L) ≤ 11/9 OPT (L) + 1, ∀L for the FFD bin-packing algorithm", Acta Mathematicae Applicatae Sinica Т. 7 (4): 321–331, ISSN 0168-9673, DOI 10.1007/BF02009683 
  3. Fernandez de la Vega, W. & Lueker, G. S. (1981), Bin packing can be solved within 1 + ε in linear time, "Bin packing can be solved within 1 + ε in linear time", Combinatorica (Springer Berlin / Heidelberg) . — Т. 1 (4): 349–355, ISSN 0209-9683, DOI 10.1007/BF02579456 
  4. А. В. Смирнов. О задаче упаковки в контейнеры. УМН, 1991, том 46, выпуск 4(280), страницы 173–174.

См. также[править | править вики-текст]