Задача со счастливым концом

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Задача со счастливым концом: любое множество из пяти точек содержит вершины выпуклого четырёхугольника.

Задача со счастливым концом — утверждение о том, что любое множество из пяти точек на плоскости в общем положении[1] имеет подмножество из четырёх точек, которые являются вершинами выпуклого четырёхугольника.

История[править | править вики-текст]

Этот результат комбинаторной геометрии назван Палом Эрдёшем «задачей со счастливым концом» поскольку решение проблемы завершилось свадьбой Дьёрдя Секереша и Эстер Клейн (венг. Eszter Klein). Известна также как «теорема Эрдёша — Секереша о выпуклых многоугольниках».

Обобщения результата на произвольное число точек являются предметом интереса математиков XX и XXI веков.

Доказательство[править | править вики-текст]

Если не менее четырёх точек образуют выпуклую оболочку, в качестве выпуклого четырёхугольника можно выбрать любой набор из четырёх точек оболочки. В противном случае имеется треугольник и две точки внутри него. Прямая, проходящая через две внутренние точки, в силу общего положения точек не пересекает одну из сторон треугольника. Вершины этой стороны и две внутренние точки образуют выпуклый четырёхугольник.

Многоугольники с произвольным числом вершин[править | править вики-текст]

Эрдёш и Секереш обобщили этот результат на произвольное число точек, что является оригинальным развитием теории Рамсея. Они также выдвинули «гипотезу Эрдёша — Секереша» — точную формулу для максимального числа вершин выпуклого многоугольника обязательно существующего в множестве из заданного числа точек в общем положении.

Восемь точек в общем положении для которых нет выпуклого пятиугольника.

В (Erdős & Szekeres 1935) доказано следующее обобщение: для любого натурального , всякое достаточно большое множество точек в общем положении на плоскости имеет подмножество точек, которые являются вершинами выпуклого многоугольника. Это доказательство появилось в той же статье, где доказывается теорема Эрдёша — Секереша о монотонных подпоследовательностях в числовых последовательностях.

Размер множества как функция числа вершин многоугольника[править | править вики-текст]

Пусть означает минимальное , для которого любое множество из точек в общем положении содержит выпуклый -угольник. Известно что:

  • , очевидно.
  • , доказала Эстер Секереш.
  • , согласно (Erdős & Szekeres 1935), это первым доказал Э. Макаи; первое опубликованное доказательство появилось в (Kalbfleisch, Kalbfleisch & Stanton 1970). Множество из восьми точек не содержащее выпуклый пятиугольник на иллюстрации показывает, что ; сложнее доказать, что любое множество из девяти точек в общем положении содержит выпуклый пятиугольник.
  • , это было доказано в (Szekeres & Peters 2006). В работе реализован сокращённый компьютерный перебор возможных конфигураций из 17 точек.
  • Значения неизвестны для .

Гипотеза Эрдёша — Секереша о числе выпуклых многоугольников[править | править вики-текст]

Исходя из известных значений для , Эрдёш и Секереш предположили, что:

для всех .

Эта гипотеза не доказана, но известны оценки сверху и снизу.

Оценки скорости роста [править | править вики-текст]

Конструктивным построением авторы гипотезы сумели позднее доказать оценку снизу, совпадающую с гипотетическим равенством:

, (Erdős & Szekeres 1961)

Однако наилучшая известная оценка сверху при не является близкой:

, (Tóth & Valtr 2005)

(использованы биномиальные коэффициенты).

Пустые многоугольники[править | править вики-текст]

Интересен также вопрос о том, содержит ли достаточно большое множество точек в общем положении пустой выпуклый четырёхугольник, пятиугольник, и так далее. То есть многоугольник не содержащий внутренних точек.

Если внутри четырёхугольника, существующего согласно теореме со счастливым концом, есть точка, то, соединив эту точку с двумя вершинами диагонали мы получим два четырёхугольника один из которых выпуклый и пустой. Таким образом, пять точек в общем положении содержат пустой выпуклый четырёхугольник, как видно на иллюстрации. Любые десять точек в общем положении содержит пустой выпуклый пятиугольник (Harborth 1978). Однако существуют сколь угодно большие множества точек в общем положении, которые не содержат пустой выпуклый семиугольник.(Horton 1983)

Таким образом, задача о пустых многоугольниках не является проблемой теории Рамсея и в принципе решена.

Вопрос о существовании пустого шестиугольника долгое время оставался открытым. Но в (Nicolás 2007) и (Gerken 2008) } было доказано, что всякое достаточно большое множество точек в общем положении содержит пустой шестиугольник. Сегодня известно, что это множество должно содержать не более f(9) (предположительно 129) и не менее 30 точек.(Overmars 2003).

Примечания[править | править вики-текст]

  1. В данном контексте общее положение означает, что никакие три точки не лежат на одной прямой.

Литература[править | править вики-текст]

Ссылки[править | править вики-текст]