Закон Гука

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
 ⛭  Механика сплошных сред
BernoullisLawDerivationDiagram.svg
Сплошная среда
См. также: Портал:Физика

Зако́н Гу́ка — утверждение, согласно которому деформация, возникающая в упругом теле (пружине, стержне, консоли, балке и т. п.), пропорциональна приложенной к этому телу силе. Открыт в 1660 году английским учёным Робертом Гуком[1].

Следует иметь в виду, что закон Гука выполняется только при малых деформациях. При превышении предела пропорциональности связь между напряжениями и деформациями становится нелинейной. Для многих сред закон Гука неприменим даже при малых деформациях.

Закон Гука для тонкого стержня[править | править вики-текст]

Для тонкого растяжимого стержня закон Гука имеет вид:

Здесь  — сила, которой растягивают (сжимают) стержень,  — абсолютное удлинение (сжатие) стержня, а коэффициент упругости (или жёсткости).

Коэффициент упругости зависит как от свойств материала, так и от размеров стержня. Можно выделить зависимость от размеров стержня (площади поперечного сечения и длины ) явно, записав коэффициент упругости как

Величина называется модулем упругости первого рода или модулем Юнга и является механической характеристикой материала.

Если ввести относительное удлинение

и нормальное напряжение в поперечном сечении

то закон Гука для относительных величин запишется как

В такой форме он справедлив для любых малых объёмов материала.

Также при расчёте прямых стержней применяют запись закона Гука в относительной форме

Обобщённый закон Гука[править | править вики-текст]

В общем случае напряжения и деформации описываются тензорами второго ранга в трёхмерном пространстве (имеют по 9 компонент). Связывающий их тензор упругих постоянных является тензором четвёртого ранга и содержит 81 коэффициент. Вследствие симметрии тензора , а также тензоров напряжений и деформаций, независимыми являются только 21 постоянная. Закон Гука выглядит следующим образом:

где  — тензор напряжений,  — тензор деформаций. Для изотропного материала тензор содержит только два независимых коэффициента.

Благодаря симметрии тензоров напряжения и деформации, закон Гука может быть представлен в матричной форме.

Для линейно упругого изотропного тела:

где модуль Юнга, коэффициент Пуассона, модуль сдвига.

См. также[править | править вики-текст]

Видеоурок: закон Гука

Примечания[править | править вики-текст]