Знакочередующийся ряд

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску

Ряд называется знакочередующимся, если его члены попеременно принимают значения противоположных знаков, т. е.:

Признак Лейбница[править | править код]

Признак Лейбница — признак сходимости знакочередующегося ряда, установлен Готфридом Лейбницем. Формулировка теоремы:

Пусть дан знакочередующийся ряд

,

для которого выполняются следующие условия:

  1. , начиная с некоторого номера (),

Тогда такой ряд сходится.

Замечания

Ряды, удовлетворяющие признаку Лейбница, называются рядами Лейбница. Следует отметить, что монотонное убывание не является необходимым для сходимости знакочередующегося ряда, таким образом и сам признак является только достаточным, но не необходимым. Ряд Лейбница может сходится абсолютно (если сходится ряд ), а может сходится условно (если ряд из модулей расходится).

Пример[править | править код]

. Ряд из модулей имеет вид  — это гармонический ряд, который расходится.

Теперь воспользуемся признаком Лейбница:

  1. знакочередование выполнено
  2. .

Следовательно, так как все условия выполнены, ряд сходится (причем условно, так как ряд из модулей расходится).

Оценка остатка ряда Лейбница[править | править код]

Из теоремы Лейбница вытекает следствие, позволяющее оценить погрешность вычисления неполной суммы ряда (остаток ряда):

Остаток сходящегося знакочередующегося ряда будет по модулю меньше первого отброшенного слагаемого:

См. также[править | править код]

Литература[править | править код]

  • Иванов Г. Е. Глава 9. Числовые ряды. §3. Ряды со знакопеременными членами // Лекции по математическому анализу. — М.: МФТИ, 2000. — Т. 1. — С. 299—303. — 359 с. — 800 экз. — ISBN 5-7417-0147-7.
  • Бронштейн И. Н., Семендяев К. А. Справочник по математике. — Изд. 7-е, стереотипное. — М.: Государственное издательство технико-теоретической литературы, 1967. — С. 296.

Примечания[править | править код]

  1. Беклемишев Д. В. Курс аналитической геометрии и линейной алгебры: Учеб. для вузов. — 10-е изд., испр. — М.: ФИЗМАТЛИТ, 2005.