Знакочередующийся ряд

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Ряд называется знакочередующимся, если его члены попеременно принимают значения противоположных знаков, т. е.:

Признак Лейбница[править | править код]

Признак Лейбница — признак сходимости знакочередующегося ряда, установлен Готфридом Лейбницем. Формулировка теоремы:

Пусть для знакочередующегося ряда

выполняются следующие условия:

  1. (монотонное убывание {an})
  2. .

Тогда этот ряд сходится.

Замечания:

Если выполнены все условия, и ряд из модулей () сходится, то исходный ряд сходится абсолютно. Если выполнены все условия, но ряд из модулей расходится, то исходный ряд сходится условно. Строгая положительность существенна.

Ряды, удовлетворяющие признаку Лейбница, называются рядами Лейбница. Следует отметить, что монотонное убывание не является необходимым для сходимости знакочередующегося ряда, таким образом и сам признак является только достаточным, но не необходимым.

Пример

. Ряд из модулей имеет вид  — это гармонический ряд, который расходится.

Теперь воспользуемся признаком Лейбница:

  1. знакочередование выполнено
  2. .

Следовательно, так как все условия выполнены, но ряд из модулей расходится, искомый ряд сходится условно.

Оценка остатка ряда Лейбница[править | править код]

Из доказательства признака Лейбница следует, что сумма знакочередующегося сходящегося ряда меньше по модулю первого члена ряда. Поскольку любой остаток ряда rn является также рядом Лейбница, то для него справедливо:

.

Литература[править | править код]

  • Иванов Г. Е. Глава 9. Числовые ряды. §3. Ряды со знакопеременными членами // Лекции по математическому анализу. — М.: МФТИ, 2000. — Т. 1. — С. 299—303. — 359 с. — 800 экз. — ISBN 5-7417-0147-7.