Источник бесперебойного электропитания

Материал из Википедии — свободной энциклопедии
(перенаправлено с «ИБП»)
Перейти к навигации Перейти к поиску
Промышленное решение: ИБП, вместе с защищаемым оборудованием, смонтирован в 19-дюймовую стойку

Исто́чник (система[1], агрегат[2]) бесперебо́йного электропита́ния (ИБП), UPS (англ. Uninterruptible Power Supply (Source, Systems)) — источник электропитания, обеспечивающий при кратковременном отключении основного источника мощность питания, а также защиту от помех в сети основного источника. ИБП является вторичным источником электропитания[3][4]:п. 3.1.1 Преобразованию может подвергаться как качество электрической энергии, так и параметры электрической энергии (напряжение, частота).[5]

Источники бесперебойного электропитания развивались параллельно с компьютерами и другими высокотехнологическими устройствами для надежного питания этого оборудования, чего стандартные сети электроснабжения обеспечить не могут.[6]:128 Наиболее широко распространены конструкции в качестве отдельного устройства, включающего в себя аккумулятор и преобразователь постоянного тока в переменный. Также в качестве резервного источника могут применяться маховики и топливные элементы. В настоящее время мощность ИБП находится в диапазоне 100 Вт … 1000 кВт (и более), возможны различные величины выходных напряжений.[6]:142

Причины использования[править | править код]

Кратковременные нарушения нормальной работы электрической сети являются неизбежными. Причиной большинства кратковременных нарушений электроснабжения являются короткие замыкания. Полностью защитить электрическую сеть от них практически невозможно или, во всяком случае, это стоило бы очень дорого.[7]:с. 6 Кратковременные перерывы питания случаются значительно чаще, чем длительные. Длительного перерыва питания возможно избежать используя автоматический ввод резерва (АВР). При этом кратковременные перерывы питания будут не только при коротком замыкании на любой из питающих АВР линий, но и на линиях, питающих соседних потребителей.[7]:с. 8

Бесперебойное от гарантированного электропитания отличается тем, что в случае гарантированного электропитания допускается перерыв на время ввода в действие резервного источника. В случае бесперебойного электропитания требуется "мгновенный" ввод в действие резервного источника. Это важное требование ограничивает круг пригодных к применению в источниках бесперебойного питания резервных источников. На практике обычно может быть применен только один такой источник — аккумуляторная батарея.[8]

Основной функцией ИБП является обеспечение непрерывности электропитания посредством использования альтернативного источника энергии. Кроме того, ИБП повышает качество электропитания, стабилизируя его параметры в установленных пределах. В ИБП в качестве накопителя энергии обычно используются химические источники тока. Кроме них могут применяться и иные накопители.[4]:п. 1.1 В качестве первичного источника может использоваться электропитание, поступающее от электросети или генератора.[4]:п. 3.1.3

Промышленность[править | править код]

Сложное технологическое оборудование современного промышленного производства не может нормально функционировать, если электроснабжение не бесперебойное. Для многих промышленных предприятий перерыв питания на несколько секунд или даже на десятые доли секунды ведет к нарушению непрерывного технологического процесса и к остановке производства.[7]:с. 5

Если допустимое время перерыва питания меньше 0,2 с возможно только использование источников бесперебойного питания, защита автоматическими выключателями цепи с коротким замыканием для уменьшения времени перерыва питания в таком случае невозможна или неэффективна. Если допустимое время более 0,2 с возможно использование защит электросети или использование источников бесперебойного питания. При допустимом времени 5…20 с возможно отказаться от источников бесперебойного питания и использовать АВР.[7]:с. 61

Для электродвигателей провалы напряжения в сети 0,4 кВ длительностью 0,3…0,5 с могут привести к тому, что векторы остаточной ЭДС электродвигателей могут оказаться в противофазе с векторами напряжения сети. В результате при восстановлении питания произойдет срабатывание электромагнитных расцепителей автоматических выключателей и окончательное отключение электродвигателей. При этом провалы напряжения длительностью менее 0,3 с не представляют опасности, поэтому для электродвигателей борьба с провалами напряжения обычно направлена на предотвращение отключения контакторов в цепи главного питания 0,4 кВ. Одной из таких мер является питание цепей управления контактора от источника бесперебойного питания.[9]:с. 251

Восприимчивость промышленных контролёров на логических микросхемах к провалам напряжения аналогична восприимчивости компьютеров.[6]:160

Нарушение работы контакторов и реле может произойти при прерывании напряжения 5…10 мс и 80…120 мс. Разница в работе одного и того же устройства возникает из-за разницы в мгновенной величины напряжения переменного тока, когда начался провал напряжения. При прохождении напряжения через ноль устойчивость более чем в 10 раз больше.[6]:165

В быту и офисах[править | править код]

Наиболее распространенное в быту и офисах применение — выключение компьютера без потери данных при отключении электроэнергии. При провалах напряжения длительностью 0,2 с происходит остановка процедур чтения/записи компьютера; 0,25 c — блокировка операционной системы; 0,4 c — перезагрузка.[6]:158

Аварийное[править | править код]

Источники питания, которые используются в случае перерыва нормального питания делятся на резервные и источники питания для систем безопасности.[10]

Международная классификация ИБП[править | править код]

Стандартом IEC 62040-3 введена следующая классификация ИБП:

Пример обозначения типа ИБП: VFI SS 111

1-я группа символов — зависимость выходного сигнала ИБП от входного (сети).

  • Класс VFI (Voltage and Frequency Independent) — напряжение и частота на выходе ИБП не зависят от входной сети.
  • Класс VI (Voltage Independent) — выход ИБП зависит от частоты входа, но напряжение поддерживается в заданных пределах пассивным или активным регулированием.
  • Класс VFD (Voltage and Frequency Dependent) — напряжение и частота на выходе ИБП зависят от входной сети.

2-я группа символов — форма выходного сигнала ИБП.

  • SS — синусоидальная форма выходного сигнала (коэффициент гармонических искажений Kги<8 %) при линейной и нелинейной нагрузке.
  • XX — несинусоидальная форма выходного сигнала при нелинейной нагрузке (синусоидальная при линейной).
  • YY — несинусоидальная форма сигнала при любой нагрузке.

3-я группа символов — динамические характеристики ИБП. Обеспечение стабильности выходного напряжения ИБП при трёх типах переходных процессов (1 — класс 1, отлично; 2 — класс 2, хорошо; и т. д.):

  • 1-я цифра: нормальный режим -> автономный режим -> режим bypass,
  • 2-я цифра: 100 % изменение линейной нагрузки в нормальном или автономном режиме (худший параметр),
  • 3-я цифра: 100 % изменение нелинейной нагрузки в нормальном или автономном режиме (худший параметр).

ИБП переменного тока[править | править код]

Первоначально ИБП переменного тока состояли из дизельного двигателя, электродвигателя, маховика и электрогенератора. При отключении питания, поступающего от электросети, за счет инерции маховика электрогенератор продолжал работать до запуска дизельного двигателя.[6]:131

История электронных ИБП переменного тока начинается с изобретения в 1957 году тиристоров. В 1964…1967 гг. были созданы ИБП с резервированием мощностью до 500 кВА. К настоящему времени основное изменение в конструкции состоит в замене тиристоров на IGBT транзисторы.[6]:130

Резервная схема[править | править код]

Резервная схема (англ. Off-Line, Standby) — в нормальном режиме питание подключенной нагрузки осуществляется напрямую от первичной электрической сети, которое ИБП фильтрует (высоковольтные импульсы и электромагнитные помехи) пассивными фильтрами. При выходе электропитания за нормированные значения напряжения (или его пропадании) нагрузка автоматически переподключается к питанию от схемы, получающей электрическую энергию от собственных аккумуляторов с помощью простого инвертора. При появлении напряжения в пределах нормы снова переключает нагрузку на питание от первичной сети.

Достоинства:

  • за счёт КПД около 99 % (при наличии напряжения сети) практически бесшумны и имеют минимальное тепловыделение;
  • невысокая стоимость ИБП в целом.

Недостатки:

  • относительно долгое время переключения[11] (порядка 6..10 мс) на питание от батарей;
  • невозможность корректировать ни напряжение, ни частоту (VFD по классификации МЭК).
  • несинусоидальная форма выходного напряжения при работе от батареи (аппроксимированная синусоида, квази-синусоида);

Чаще всего ИБП, построенные по такой схеме, используется для питания персональных компьютеров или рабочих станций локальных сетей начального уровня, для которых не критично своевременное отключение в случае неполадки в сети. Практически все недорогие маломощные ИБП, предлагаемые на отечественном рынке, построены по данной схеме.

Интерактивная схема[править | править код]

Интерактивная схема (англ. Line-Interactive) — устройство аналогично предыдущей схеме; дополнительно на входе присутствует ступенчатый стабилизатор напряжения на основе автотрансформатора, позволяя получить регулируемое выходное напряжение. (VI по классификации МЭК). При работе в нормальном режиме такие ИБП не корректируют частоту, пассивные фильтры фильтруют входящее переменное напряжение. При пропадании напряжения ИБП переходит на питание от инвертора, аналогично предыдущему.

Инверторы некоторых моделей линейно-интерактивных ИБП выдают напряжение как прямоугольной или трапецеидальной формы, как у предыдущего варианта, так и синусоидальной формы. Время переключения меньше, чем в предыдущем варианте, так как осуществляется синхронизация инвертора с входным напряжением. КПД такой же высокий, как и у резервных[12].

Недостатки: в режиме «от сети» не выполняет функцию фильтрации пиков, и обеспечивает только крайне примитивную стабилизацию напряжения (обычно 2—3 ступени автотрансформатора, переключаемые релейно, функция называется «AVR»).

В режиме «от батарей» некоторые, особенно дешёвые, схемы выдают на нагрузку частоту куда выше 50 Гц, и осциллограмму переменного тока, имеющую мало общего с синусоидой. Это связано с применением классического трансформатора крупного размера в схеме (вместо инвертора на полупроводниковых ключах). В связи с тем, что трансформатор данного габарита имеет (в связи с возникновением гистерезиса в сердечнике) ограничение на передаваемую мощность, которое линейно растет с частотой, данного трансформатора (занимает 1/3 объёма всего ИБП) хватает для питания цепи зарядки батарей на 50 Гц в режиме «от сети». Но, в режиме «от батарей», через этот трансформатор нужно пропустить уже сотни ватт мощности, что возможно только путём повышения частоты.

Это приводит к невозможности питания приборов, использующих, например, асинхронные двигатели (почти вся бытовая техника, включая отопительные системы).

По сути, от такого ИБП можно питать только приборы, нетребовательные к качеству питания, то есть, например, все приборы с импульсными БП, где питающее напряжение немедленно выпрямляется и фильтруется. То есть компьютеры и значительная часть современной бытовой электроники. Также можно питать осветительные и обогревательные приборы.

Схема двойного преобразования[править | править код]

Режим двойного преобразования[13] (англ. online, double-conversion, онлайн) — используется для питания нагруженных серверов (например, файловых), высокопроизводительных рабочих станций локальных вычислительных сетей, а также любого другого оборудования, предъявляющего повышенные требования к качеству сетевого электропитания. Принцип работы состоит в двойном преобразовании (double conversion) рода тока. Сначала входной переменный ток преобразуется в постоянный, затем обратно в переменный ток с помощью обратного преобразователя (инвертора). При пропадании входного напряжения переключение нагрузки на питание от аккумуляторов не требуется, поскольку аккумуляторы включены в цепь постоянно (т. н. буферный режим работы аккумулятора) и для этих ИБП параметр «время переключения» не имеет смысла. В маркетинговых целях может использоваться фраза «время переключения равно 0», правильно отражающая основное преимущество данного вида ИБП: отсутствие промежутка времени между пропаданием внешнего напряжения и началом питания от батарей. ИБП двойного преобразования имеют невысокий КПД (от 80 до 96,5 %) в режиме on-line, из-за чего отличаются повышенным тепловыделением и уровнем шума. Однако у современных ИБП средних и высоких мощностей ведущих производителей предусмотрены разнообразные интеллектуальные режимы, позволяющие автоматически подстраивать режим работы для повышения КПД вплоть до 99 %. В отличие от двух предыдущих схем, способны корректировать не только напряжение, но и частоту (VFI по классификации МЭК).

Достоинства:

  • отсутствие времени переключения на питание от батарей;
  • синусоидальная форма выходного напряжения, то есть возможность питать любую нагрузку, в том числе отопительные системы (в которых есть асинхронные двигатели).
  • возможность корректировать и напряжение, и частоту (более того, такой прибор одновременно является и самым лучшим из возможных стабилизаторов напряжения).

Недостатки:

  • Низкий КПД (80—94 %), повышенная шумность и тепловыделение. Практически всегда прибор содержит вентилятор компьютерного типа, и потому не бесшумен (в отличие от line-interactive ИБП).
  • Высокая стоимость. Примерно вдвое-втрое выше, чем line-interactive.

ИБП постоянного тока[править | править код]

ИБП постоянного тока отличается от других схем отсутствием инвертора.

Характеристики ИБП[править | править код]

  • выходная мощность, измеряемая в вольт-амперах (VA) или ваттах (W). Стоит обратить внимание, что оборудование, содержащее мощные электродвигатели (холодильник, погружные насосы автономных водопроводов и систем полива), имеет «пусковые токи». Это означает, что в момент пуска двигателя устройство кратковременно потребляет мощность, в 5—7 раз превышающую паспортную. ИБП должен выбираться с учётом этого факта. То же касается и лазерных принтеров, которые обычно вообще запрещают подключать к ИБП;
  • выходное напряжение, измеряется в вольтах, V;
  • время переключения[11], то есть время перехода ИБП на питание от аккумуляторов (измеряется в миллисекундах, ms);
  • время автономной работы, определяется ёмкостью батарей и мощностью подключённого к ИБП оборудования (измеряется в минутах, мин.), у большинства офисных ИБП оно равняется 4—15 минутам; (обычно 40—45 минут при свежих батареях и ненагруженном компьютере).
  • ширина диапазона входного (сетевого) напряжения, при котором ИБП в состоянии стабилизировать питание без перехода на аккумуляторные батареи (измеряется в вольтах, V);
  • срок службы аккумуляторных батарей (измеряется годами, обычно свинцовые аккумуляторные батареи значительно теряют свою ёмкость уже через 2—3 года. Сильно зависит от качества, а значит, и цены ИБП, конкретно от степени примитивности его цепи зарядки батареи).

Конструкция[править | править код]

Устройства хранения электроэнергии[править | править код]

Химические[править | править код]

Реализация основной функции достигается работой устройства от аккумуляторов, установленных в корпусе ИБП, под управлением электрической схемы, поэтому в состав любого ИБП, кроме схемы управления, входит зарядное устройство, которое обеспечивает зарядку аккумуляторных батарей при наличии напряжения в сети, обеспечивая тем самым постоянную готовность к работе ИБП в автономном режиме. Для увеличения времени автономного режима работы можно оснастить ИБП дополнительной (внешней) батареей.

В источниках бесперебойного электропитания могут быть использованы химические источники тока (ХИТ):

  • аварийная батарея — батарея ХИТ, подающая необходимую электрическую энергию в цепь при перерывах в работе нормального источника энергии;
  • буферная батарея — батарея ХИТ, подключенная параллельно к постоянному источнику тока для уменьшения влияния колебаний энергии на источник.[14]

Электрический аккумулятор является вторичным химическим источником тока.[15]

Динамические[править | править код]

Конденсаторы[править | править код]

Главное различие между конденсаторами и аккумуляторами заключается в том, что конденсаторы непосредственно хранят электрический заряд, а аккумуляторы превращают электрическую энергию в химическую, запасают ее, а потом происходит обратное преобразование. Однако, у электролитических конденсаторов емкость недостаточна для применения в длительно работающих источниках бесперебойного питания. Намного большую емкость имеют ионисторы.[16]

При использовании АВР постоянного тока с использованием релейной схемы можно использовать для исключения перерывов питания на время переключения конденсатор большой ёмкости.[9]:с. 229

Байпас[править | править код]

Байпасом называется один из составляющих ИБП блоков. Режим байпас (англ. Bypass, «обход») — питание нагрузки отфильтрованным напряжением электросети в обход основной схемы ИБП. Переключение в режим Bypass выполняется автоматически или вручную (ручное включение предусматривается на случай проведения профилактического обслуживания ИБП или замены его узлов без отключения нагрузки). Может делать т. н. фазануль («сквозной нуль»). Применяется в online-схемах, более того, выключенный кнопкой OFF online UPS остаётся в режиме байпаса, то же самое происходит при разрушении силовых компонентов схемы, определённом управляющими цепями, а также при аварийном отключении схемы по перегрузке выхода. В line-interactive UPS режим работы «от сети» и есть байпас.

Стабилизатор переменного напряжения[править | править код]

Используется в ИБП, которые работают по интерактивной схеме. Часто ИБП оснащается только повышающим «бустером» (англ. booster), который имеет всего лишь одну либо несколько ступенек повышения, но есть модели, которые оснащены универсальным регулятором, работающим и на повышение (boost), и на понижение (buck) напряжения. Использование стабилизаторов позволяет создать схему ИБП, способную выдержать долгие глубокие «подсадки» и «проседания» входного сетевого напряжения (одной из наиболее распространённых проблем отечественных электросетей) без перехода на аккумуляторные батареи, что позволяет значительно увеличить срок «жизни» аккумуляторной батареи.

Инвертор[править | править код]

Схема инвертора 12 Вольт постоянного в 230 Вольт переменного напряжения

Инвертор — устройство, которое преобразует род напряжения из постоянного в переменное (аналогично переменное в постоянное). Основные типы инверторов:

  • инверторы, которые генерируют напряжение прямоугольной формы;
  • инверторы с пошаговой аппроксимацией;
  • инвертор с широтно-импульсной модуляцией (ШИМ).
  • преобразователь с импульсно-плотностной модуляцией (ИПМ, англ. Pulse-density modulation)

Показатель, который характеризует степень отличия формы напряжения или тока от идеальной синусоидальной формы — коэффициент нелинейных искажений (англ. Total Harmonic Distortion, THD). Типовые значения:

  • 0 % — форма сигнала полностью соответствует синусоиде;
  • порядка 3 % — форма, близкая к синусоидальной;
  • порядка 5 % — форма сигнала, приближенная к синусоидальной;
  • до 21 % — сигнал имеет трапецеидальную или ступенчатую форму (модифицированный синус или меандр);
  • 43 % и свыше — сигнал прямоугольной формы (меандр).

Для уменьшения влияния на форму напряжения в питающей электросети (если входным узлом ИБП, построенного по схеме с двойным преобразованием, является тиристорный выпрямитель, элемент нелинейный и потребляющий большой импульсный ток, такой ИБП становится причиной появления гармоник высшего порядка) во входной цепи ИБП устанавливается специальный THD-фильтр. При использовании транзисторных выпрямителей коэффициент нелинейных искажений (англ. Total Harmonic Distortion, THD) составляет порядка 3 %, и фильтры не используют.

Трансформатор[править | править код]

Гальваническую развязку между входом и выходом (как правило, в ИБП таковая не делается вообще из принципиальных соображений пропуска «сквозного нуля» на нагрузку, то есть отсутствия любой коммутации провода нейтрали от входа UPS до его выхода) осуществляет установленный во входной цепи ИБП (между электросетью и выпрямителем) входной изолирующий трансформатор. Соответственно, в выходной цепи ИБП между преобразователем и нагрузкой размещён выходной изолирующий трансформатор, который обеспечивает гальваническую развязку между входом со схемы ИБП и выходом на подключенную нагрузку.

Интерфейс[править | править код]

Для расширенного мониторинга состояния самого ИБП (например, уровень заряда батарей, параметры электрического тока на выходе) применяются различные интерфейсы: для подключения к компьютеру — последовательный (COM) порт или USB, при этом производителем ИБП поставляется фирменное программное обеспечение, которое позволяет, проанализировав ситуацию, определить время работы и дать оператору возможность безопасно выключить компьютер, завершив работу всех программ. Для наблюдения за состоянием источников бесперебойного питания и другого оборудования через локальную вычислительную сеть используется протокол SNMP и специализированное программное обеспечение.

Для того, чтобы повысить надёжность всей системы в целом, применяется резервирование — схема, которая состоит из двух или более ИБП.

Производители[править | править код]

Распределение продаж ИБП по производителям (2006 г., «IT Research»):

Вендор млн долл. %
APC 233,7 54,6 %
Ippon[17] 42,0 7,3 %
Powercom 24,1 3,9 %
General Electric 22,3 4,5 %
GMUPS 19,2 4,0 %
Eaton Powerware 20,4 5,0 %
Emerson NP 18,2 4,5 %
Powerman 16,8 4,1 %
MGE UPS Systems 12,2 3,01 %
GE Digital Energy 9,1 2,2 %
Chloride 6,7 1,66 %
INELT 4,4 1,21 %
AEG Power Solutions 3,7 0,91 %
NeuHaus 3,7 0,90 %
Newave 3,1 0,76 %
Socomec Sicon UPS 2,3 0,58 %
Sven 1,9 0,46 %
Riello 1,8 0,45 %
Tripp Lite 0,5 0,13 %
Lighthouse 0,5 0,13 %
ESE 0,5 0.13%
BlueWalker 0,2 0,04 %
Inform Elektronik 0,1 0,03 %
Infosec 0,04 0,01 %
Всего 428,24 100,00 %

Ссылки[править | править код]

Примечания[править | править код]

  1. ГОСТ 27699-88 Системы бесперебойного питания приемников переменного тока. Общие технические условия
  2. ГОСТ МЭК 62040-3-2009 Системы гарантированного электроснабжения. Агрегаты бесперебойного питания. Часть 3. Общие технические требования. Методы испытаний
  3. ГОСТ Р 53560-2009 Системы тревожной сигнализации. Источники электропитания. Классификация. Общие технические требования. Методы испытаний.
  4. 1 2 3 ГОСТ IEC 62040-1-2013 Системы бесперебойного энергоснабжения (UPS). Часть 1. Общие требования и требования безопасности к UPS
  5. ГОСТ 18311-80 Изделия электротехнические. Термины и определения основных понятий п.4
  6. 1 2 3 4 5 6 7 Куско А., Томпсон М. Сети электроснабжения. Методы и средства обеспечения качества энергии —Саратов: Профобразование, 2017
  7. 1 2 3 4 Гуревич Ю.Е., Кабиков К.В. Особенности электроснабжения, ориентированного на бесперебойную работу промышленного потребителя —М.: Элекс-КМ, 2005.
  8. Бушуев В.М. Электропитание устройств связи —М.: Радио и связь, 1986. С. 122
  9. 1 2 Гуревич В.И. Устройства электропитания релейной защиты. Проблемы и решения —М.: Инфра-Инженерия, 2013
  10. ГОСТ 30331.1-2013 (IEC 60364-1:2005) Электроустановки низковольтные. Часть 1. Основные положения, оценка общих характеристик, термины и определения пп.20.55, 20.101
  11. 1 2 Важно знать: нагрузка обесточивается на время переключения ИБП на питание от аккумуляторных батарей и обратно! Поэтому ИБП интерактивного и offline-типа (независимо от уровня его собственной надёжности) не может считаться высоконадёжным источником бесперебойного питания для персонального компьютера: персональный компьютер может в момент переключения успеть уйти на перезагрузку, потому что типичное время переключения ИБП и время, которое может выдержать компьютер в обесточенном состоянии без перезагрузки, — одного порядка (зависит от различных факторов, в частности схемотехнических параметров и возраста его блока питания, текущего уровня энергопотребления процессора и видеокарты).
  12. Различные типы систем ИБП http://www.apc.com/salestools/SADE-5TNM3Y/SADE-5TNM3Y_R7_RU.pdf
  13. Граф Ш., Гессель М. 1. Введение // Схемы поиска неисправностей = Fehlererkennungsschaltungen. — М.: Энергоатомиздат, 1989. — С. 6. — 144 с. — 80 000 экз. — ISBN 5-283-02462-8.
  14. ГОСТ Р МЭК 60050-482-2011 Источники тока химические. Термины и определения
  15. ГОСТ 15596-82 Источники тока химические. Термины и определения
  16. Elec.ru Конденсатор вместо аккумулятора
  17. Ippon