История физики

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
История науки
PurehuggingRoseStar.png
По тематике
Математика
Естественные науки
Астрономия
Биология
Ботаника
География
Геология
Физика
Химия
Экология
Общественные науки
Лингвистика
Психология
Социология
Философия
Экономика
Технология
Вычислительная техника
Сельское хозяйство
Медицина
Навигация
Категории

Данная статья посвящена основным событиям и тенденциям в истории физикинауки, изучающей фундаментальные (наиболее общие) свойства и законы движения объектов материального мира.

До XVII века механика, физика, науки о Земле, астрономия и даже физиология были частью «пакета знаний», называвшегося «натуральная философия» и соединявшего позитивные сведения о природных явлениях с умозрительными фантазиями и ошибочными заключениями о причинах этих явлений[1]. История физики как самостоятельной науки начинается в XVII веке с опытов Галилея и его учеников. Теоретический фундамент классической физики создал Ньютон в конце XVII века. Сочетание быстрого технологического развития и его теоретического осмысления в XVIII—XIX веках привело к выявлению коренных физических понятий (масса, энергия, импульс, атомы и т. д.) и открытию фундаментальных законов их взаимосвязи, хорошо проверенных в экспериментах.

В начале XX века сразу в нескольких областях была обнаружена ограниченность сферы применения классической физики. Появились теория относительности, квантовая физика, теория микрочастиц. Но количество нерешённых физических проблем по-прежнему велико, и это стимулирует деятельность физиков по дальнейшему развитию данной науки.

Содержание

Ранние физические воззрения[править | править вики-текст]

В Древнем мире и Средневековье происходило становление астрономии, оптики и других наук, развитие которых связывалось с применением математики. В то же время развивалась натурфилософия, которая пыталась (в основном качественно) объяснять причины явлений. Если создать практически полезную модель явления природы не удавалось, её заменяли религиозные мифы (например, «молния есть гнев богов», «затмение Солнца вызвано происками дракона»).

Средств для проверки теоретических моделей и выяснения вопроса, какая из них верна, в древности было крайне мало, даже если речь шла о земных каждодневных явлениях. Единственные физические величины, которые умели тогда достаточно точно измерять, — вес, длина и угол. Эталоном времени служили сутки, которые в Древнем Египте делили не на 24 часа, а на 12 дневных и 12 ночных, так что было два разных часа, и в разные сезоны продолжительность часа была разной. Но даже когда установили привычные нам единицы времени, из-за отсутствия точных часов большинство физических экспериментов было просто невозможно провести. Поэтому естественно, что вместо научных школ возникали умозрительные или мистические учения.

Месопотамия и древний Египет[править | править вики-текст]

Несмотря на большое число дошедших до нас документов древнего Египта и Вавилона (III—I тысячелетия до н. э.), ни один из них не содержит каких-либо сведений по физике. Наиболее развитой теоретической наукой была, видимо, астрономия, тогда ещё не отделившаяся от астрологии. Для нужд астрономии вавилоняне разработали методы для довольно точного измерения времени и углов; точность вавилонских астрономических таблиц была намного выше, чем египетских[2].

В области прикладной механики, судя по впечатляющим сооружениям, египтяне и вавилоняне далеко продвинулись — они умело использовали при строительстве блоки, наклонные плоскости, рычаги, клинья и другие механизмы. Однако нет признаков того, что у них существовала какая-либо развитая физическая теория[2].

Древний Китай[править | править вики-текст]

Древнейшие дошедшие до нас публикации в области естественных наук появились в Китае и относятся к VII веку до н. э.; возможно, были и более ранние. Китай уже в древние времена достиг высокого уровня развития строительства и ремесла, и накопленный опыт был подвергнут научному анализу. Расцвет китайской физики относится примерно к V—II векам до н. э. Результаты размышлений древнекитайских учёных были включены в различные общефилософские сочинения, из которых выделяются труды Мо-цзы (IV век до н. э.) и его учеников («моистов»)[3].

В той части труда «Моистский канон», где затронуты физические вопросы, основное внимание уделяется механике. Там предпринята первая попытка сформулировать закон инерции: «Прекращение движения происходит из-за противодействующей силы… Если не будет никакой противостоящей силы, то движение никогда не закончится». Далее упоминается некий «переход по мосту», что можно трактовать как утверждение о прямолинейности свободного движения. В других китайских сочинениях просматриваются (в чисто качественной формулировке) закон действия и противодействия, закон рычага, расширение тел при нагревании и сжатие при охлаждении[4].

Реконструкция древнекитайского компаса времён династии Хань

Китайцы далеко продвинулись в открытии законов геометрической оптики, в частности, им была известна камера-обскура, причём принцип её работы был описан совершенно правильно (в трактате «Мо-цзин»). Примерно с VI века до н. э. китайцы начали использовать компас («указатель юга»), действие которого они объясняли воздействием звёзд и использовали также для гадания. Привычный нам компас со стрелкой появился впервые тоже в Китае в XI веке. Китайские учёные много занимались теорией музыки (в том числе резонансом) и акустикой[4].

В целом древнекитайская физика имела прикладной характер. Отдельные попытки обобщения огромного накопленного эмпирического материала носили метафизический или даже религиозный характер; например, привлекались понятия инь/ян и других природных стихий или конфуцианская мистика[5].

Древняя Индия[править | править вики-текст]

Индусы представляли мир состоящим из пяти основных элементов: земля, огонь, воздух, вода и эфир. Последний заполнял пространство, а также считался носителем звука. Остальные элементы часто связывали с разными органами чувств. Около VII века до н. э. индийские учёные, начиная с основателя школы «вайшешика» Канады, сформулировали и стали развивать концепцию атомов. Приверженцы теории полагали, что атом состоит из элементов, в каждом атоме находится до 9 элементов и каждый элемент имеет до 24 свойств[6].

Физика и механика древней Индии, как и у Аристотеля, имеют отчётливый метафизический и качественный характер. Особенно подробно рассматривался вопрос о движении. По учению вайшешики, каждое тело может принимать участие в данный момент только в одном движении, которое встречает сопротивление и само себя разрушает. Причиной движения могут быть напор (в средневековой Европе называвшийся «импетус»), волевое действие и упругость; никакое тело не может само себя привести в движение. Вечное движение невозможно[7].

Античная физика[править | править вики-текст]

Общая характеристика[править | править вики-текст]

Античная наука в древней Греции опиралась на построенную греческими философами содержательную и целостную систему математических знаний — алгебраических и геометрических. Пифагорейцы провозгласили, что все природные явления (механика, астрономия, оптика, музыка и другие) подчиняются математическим законам. Такой подход позволил получить ряд ценных результатов, однако демонстративное дистанцирование многих античных учёных от опытной проверки своих теорий привело и к многочисленным заблуждениям[8].

Важнейшими источниками по античной физике являются труды Платона, Аристотеля (IV век до н. э.), Архимеда (III век до н. э.), Герона и Лукреция Кара (I век до н. э.), а также уцелевшие в цитатах фрагменты текстов других мыслителей. В отличие от мыслителей Китая и Индии, древнегреческие натурфилософы разработали ряд внемифических систем физических взглядов широкого охвата, построенных на основе единых и явно сформулированных принципов. Хотя большинство этих принципов оказались ошибочными, греческая натурфилософия оказала огромное влияние на развитие науки и не имела конкурентов вплоть до XVII века[8]. Значение античной физики в том, что она ясно поставила коренные проблемы структуры и движения материи, а также обсудила возможные пути решения этих проблем.

Первоэлементы и платонизм[править | править вики-текст]

Первоначально античные физики выдвигали различные гипотезы о том, что следует считать основой Вселенной, первоэлементом, из которого строится всё многообразие наблюдаемых объектов. Фалес считал таковым воду, Анаксимен — воздух, Гераклит — огонь. Анаксимандр полагал, что все эти стихии вторичны и порождаются особой субстанцией, «апейроном». В системе Анаксагора число элементов бесконечно[9]. С появлением хорошо аргументированной пифагорейской доктрины с тезисом «Числа правят миром» её концепции включились в этот спор, математика рассматривалась как своего рода идеальный скелет мира и прямой путь к познанию законов Вселенной. Тем не менее качественные, метафизические модели мира в античной физике преобладали[10].

Платон, знаменитый философ IV века до н. э., коснулся физических проблем в своём диалоге «Тимей». Несмотря на откровенно мистический характер изложенных там идей, этот труд оставил заметный след в истории науки и философии. Платон постулирует существование, наряду с материальным, ещё и идеального мира «чистых идей», устроенного по законам красоты и математики; реальный же мир представляет собой его размытую копию.

Платон признаёт четыре классические стихии: землю, воду, воздух и огонь, но наряду с ними — ещё и первичный элемент, порождающий прочие четыре, когда укладывается в фигуры правильных многогранников. Платон даже нарисовал схему, какие многогранники соответствуют разным стихиям; например, куб соответствует земле, а пирамида — огню. С этих позиций Платон анализирует и объясняет различные физические процессы — горение, растворение, смену фаз воды, коррозию и т. д.[11]

Атомизм[править | править вики-текст]

Появление апорий Зенона поставило труднейшую и до сих пор не решённую проблему: делимы ли материя, время и пространство бесконечно или для деления существуют какие-то пределы. Одним из вариантов ответа на этот вопрос стал атомизм (Демокрит, V век до н. э.), согласно которому разные тела отличаются друг от друга не составом, а строением, то есть структурой соединения в них неделимых атомов (впрочем, допускалось наличие атомов разных типов и формы). Атомисты считали, что в природе нет ничего, кроме атомов и пустоты. Атомы обладают способностью достаточно прочно соединяться между собой, образуя вещество и другие наблюдаемые физические проявления (свет, тепло, запахи, магнетизм, электрические эффекты). Эпикур даже полагал, что свобода воли человека вызвана тем, что движение атомов подвержено случайным смещениям[12].

Атомисты провозгласили закон сохранения материи, первую формулировку которого предложил Эмпедокл (предположительно пифагореец) в V веке до н. э.:

Ничто не может произойти из ничего, и никак не может то, что есть, уничтожиться.

Позже аналогичный тезис высказывали Демокрит, Аристотель, Эпикур и другие.

Аристотель[править | править вики-текст]

Платон (справа) и Аристотель. XV в., Лука Делла Роббиа

Аристотель (|V век до н. э.) осудил модели своих предшественников как догматические и не подтверждённые наблюдениями. Единственным источником сведений о природе он признал анализ реального опыта, а вводить в теорию заведомо ненаблюдаемые понятия (вроде атомов или корпускул) принципиально недопустимо. Сам Аристотель старался на место догм поставить логические рассуждения и ссылку на общеизвестные физические явления. Термин «Физика» возник как название одного из сочинений Аристотеля. Учёному одно время приписывался содержательный труд «Механические проблемы», но, скорее всего, у этой книги был более поздний автор из Александрии, по взглядам близкий к школе Аристотеля.

Предметом физики, по мнению Аристотеля, является выяснение первопричин природных явлений:

Так как научное знание возникает при всех исследованиях, которые простираются на начала, причины или элементы путём их познания (ведь мы тогда уверены в познании всякой вещи, когда узнаём её первые причины, первые начала и разлагаем её впредь до элементов), то ясно, что и в науке о природе надо определить прежде всего то, что относится к началам.

Вопреки стремлению Аристотеля к опытному обоснованию физики, такой подход, из-за отсутствия экспериментальной физики и точных измерительных приборов, ещё долго (фактически до Ньютона) отдавал приоритет метафизическим фантазиям. В частности, Аристотель и его последователи утверждали, что движение тела поддерживается приложенной к нему силой. Понятия скорости у Аристотеля, как и у других античных мыслителей, не было, так как для него требуется отношение пути ко времени, а греки признавали только отношения однородных величин (по той же причине отсутствовало понятие плотности)[13].

Аристотель резко критиковал атомистов, заявив: если атомов бесконечно много и они движутся, то у них должно быть бесконечно много «движущих причин», но тогда мир обратился бы в хаос. Большинство движений, по Аристотелю, происходят потому, что тела стремятся занять свои естественные места — например, для тяжёлых тел такое место находится в центре Земли, отсюда возникает эффект падения. Тяжёлые предметы, по мнению Аристотеля, падают быстрее, чем лёгкие той же формы, и время падения обратно пропорционально весу тел. Аристотель рассматривал также и «искусственное движение» под влиянием приложенной силы, но считал, что с прекращением воздействия тело остановится. Очевидное противоречие с опытом — например, летящая стрела движется вовсе не по вертикали — Аристотель объяснял тем, что стрелу поддерживает возмущение воздуха, созданное при выстреле. Он отрицал возможность пустоты, так как в ней невозможно определить «естественное движение»[14][13].

Аристотель отверг и модель Платона. Он указал, что она не объясняет многие реальные явления, например, рост давления пара при закипании воды, а связь свойств стихий с многогранниками есть произвольный домысел. Взамен Аристотель предложил столь же надуманную «теорию качеств»[14].

Система Аристотеля просуществовала почти два тысячелетия, за это время она подверглась многочисленным толкованиям и комментариям. Большой спор вызвал, например, вопрос о том, как меняется вес тела по мере его приближения к центру Земли — одни считали, что вес растёт, другие — что он падает до нуля[13].

Другие античные достижения[править | править вики-текст]

Античные греки впервые разработали несколько количественных (изложенных математически) моделей, в частности, теорию рычага (включая рычажные весы) и механического равновесия. Особенно глубокое исследование этих проблем выполнили Архимед, сделавший вывод: «величины уравновешиваются на длинах, обратно пропорциональных тяжестям», и Герон Александрийский. Плодотворно исследовались также понятия центра тяжести и выталкивающей силы жидкости (закон Архимеда). В IV веке н. э. Синезий Киренский, ученик Гипатии, на основе открытий Архимеда изобрёл ареометр для определения удельного веса жидкостей[13].

Паровая турбина Герона

Эмпедокл и Анаксагор экспериментально доказали упругость воздуха. Герон, обобщая накопленный опыт по гидравлике, опубликовал учебное пособие «Пневматика». Сжимаемость газа, писал Герон, доказывает, что он состоит из частиц, разделённых пустотой. В «Пневматике» описано множество технических устройств, в том числе первая паровая турбина. Большой вклад был внесен в теоретическую акустику и теорию музыки..

Эллины успешно развивали оптику. Евклид в книге «Оптика и катоптрика» глубоко исследовал законы перспективы и теорию зеркал. Другой труд большого объёма по оптике написал Архимед, но он не сохранился. Известно, что Архимед измерил угловой диаметр Солнца и получил довольно точный результат: между 27' и 33' (угловых минут). У Герона встречается первый вариационный принцип «наименьшего пути» для отражения света. Тем не менее в оптике древних были и грубые ошибки. Например, угол преломления считался пропорциональным углу падения (эту ошибку разделял даже Кеплер), изображение на сетчатке глаза ещё не было открыто, и поэтому зрение связывалось с особыми лучами, исходящими из глаз человека и животных. Гипотезы о природе света и цветности были многочисленны, но чисто умозрительны[15].

Страны ислама[править | править вики-текст]

«Золотой век» науки в исламских странах длился примерно с IX по XIV век (до монгольского завоевания). В этот период главные труды греческих и индийских учёных были переведены на арабский, после чего арабские, персидские и тюркские мыслители развили и прокомментировали эти труды, а в ряде случаев предложили новые физические модели. Основное внимание, как и в Греции, уделялось механике и оптике[16].

Абдуррахман аль-Хазини (XII век), автор трактата «Книга весов мудрости» (1121 год), продолжил исследования Архимеда по рычажным весам и центрам тяжести. В книге описаны многочисленные практические применения изложенных принципов, включая способы обнаружить ювелирные подделки, приводится таблица удельных весов разных материалов. Аль-Хазини пошёл дальше Архимеда и распространил его закон на тела в воздухе: при откачке воздуха из резервуара находящиеся там тела становятся тяжелее. Дополнительную ценность книге аль-Хазини придают включённые в неё результаты Омара Хайяма и Аль-Бируни, связанные с темой точного взвешивания и расчёта удельного веса[16].

Титульная страница латинского перевода «Книги оптики»

В оптике крупнейший после Птолемея вклад сделал Ибн аль-Хайсам («Альхазен», 965—1039) в труде «Книга оптики». Он отверг древнюю гипотезу о лучах зрения, исходящих из глаз, дал правильное описание строения глаза и свойств бинокулярного зрения. Он, однако, полагал, что изображение внешних предметов формируется внутри хрусталика. Альхазен высказал предположение о конечности скорости света и проводил опыты с камерой-обскурой, опыты по преломлению света и эксперименты с различными видами зеркал. Он установил, что отражённый от криволинейного зеркала луч находится в плоскости, содержащей падающий луч и нормаль к поверхности. Взгляды Альхазена (без упоминания его имени) были изложены в книге Эразма Витело (Вителлия), которая появилась в 1271 году и заслужила большую популярность; эта книга издавалась на протяжении 300 лет и существенно содействовала развитию оптики в Европе[17].

Аль-Джазари (1136—1206), один из крупнейших арабских изобретателей, в своем сочинении «Книга грёз» описал коленчатый вал, клапанные насосы, водоподъёмные машины, водяные часы, музыкальные автоматы и т. д.. Аль-Джазари принадлежат такие технологические новшества, как: ламинирование древесины, кодовые замки, гибрид компаса с универсальными солнечными часами для любых широт и т. д..

Средневековая Европа[править | править вики-текст]

В христианской Европе научные исследования фактически начались в XIV веке. До этого можно упомянуть только несколько достижений: изобретены очки, правильно объяснено явление радуги, освоен компас[17]. Французский учёный Пьер де Марикур[en] в 1269 году издал обширное исследование свойств магнитов, где указал, помимо прочего, что намагниченный предмет можно перемагнитить и что источником магнетизма являются земные полюса[18].

В XIV веке появились переводы на латинский арабских и уцелевших греческих текстов. Эти работы оказали значительное влияние на таких средневековых философов, как Фома Аквинский. Средневековые схоласты искали способ согласовать античную философию с христианской теологией, провозглашая Аристотеля самым выдающимся мыслителем античности. Физика Аристотеля, в тех случаях, когда она не противоречила учению церкви, стала основой физических объяснений.

Так в средневековье представляли себе траекторию пушечного ядра

В соответствии с учением Аристотеля, средневековые мыслители считали, что тела тяготеют к их естественному месту пребывания. Например, «тяжёлые» тела тяготеют вниз, «лёгкие» — вверх. Как указано выше, считалось, что для поддержания движения требуется некоторая сила, без силы движение прекращается. Эта модель подверглась аргументированной критике уже в VI веке н. э. (Иоанн Филопон). Рассмотрим следующий вопрос: почему камень, брошенный вертикально вверх, продолжает некоторое время двигаться вверх? Для ответа на этот вопрос средневековые учёные (Филопон, позднее — Буридан) развивали теорию импетуса (встроенной силы движения). Это понятие было шагом в сторону концепции инерции, хотя всё же существенно отличалось от него, так как предполагала, что на брошенные тела продолжает действовать некоторая сила. Филопон также отверг мнение Аристотеля, что тяжёлые тела падают быстрее лёгких[19].

В XIV веке английская группа учёных (так называемые «Оксфордские калькуляторы») провела новое исследование нерешённых проблем механики. Они также критиковали механику Аристотеля, уточнили определение скорости и ввели понятие мгновенной скорости, детально изучили равноускоренное движение. Эти работы продолжил парижский натурфилософ Буридан и его ученики Никола Орем и Альберт Саксонский. Школа Буридана не только подвергла разносторонней критике архаичные выводы Аристотеля, но и продвинулась к новой механике, близко подойдя к механическому принципу относительности. Буридан писал, что импетус, соединяясь с тяжестью, ускоряет падение тела; он также, в осторожных выражениях, допустил суточное вращение Земли[20].

В конце XV века Леонардо да Винчи открыл фундаментальный закон трения[21].

Зарождение физики[править | править вики-текст]

XVI век: технический прогресс и начало научной революции[править | править вики-текст]

В XVI веке наблюдается быстрый технический прогресс во многих областях. Были изобретены печатный станок, вязальная машина и многие другие сложные механизмы, появились развитые средства обработки материалов, потребности артиллерии, мореплавания и строительства стимулировали развитие физики. Долгое время проведению экспериментов мешал тот факт, что практически все они были связаны с измерением времени, однако водяные и солнечные часы не могли обеспечить приемлемую точность (например, Галилей для отсчёта времени использовал собственный пульс). В XVI—XVII веках начинают появляться новые, более совершенные измерительные инструменты: механические часы с маятником, термометр, барометр, точные пружинные весы и др. Эти изобретения значительно расширили возможности проверки физических гипотез[22]. Не менее важной переменой становится растущее убеждение, что реальный опыт является верховным судьёй во всех естественно-научных спорах. Об этом настойчиво писали Николай Кузанский, Леонардо да Винчи, Фрэнсис Бэкон, другие крупные учёные и философы[21]. Ещё одним важным фактором стало практическое завершение освоения античного и исламского наследия — все основные уцелевшие книги были переведены на латинский и освоены европейскими учёными.

Большие перемены произошли и в развитии теоретической науки. Научная революция началась с того, что Николай Коперник предложил гелиоцентрическую систему мира (1543 год) взамен общепринятой тогда геоцентрической. В своей книге «О вращении небесных сфер» Коперник высказал также ряд идей новой, неаристотелевой механики, включая принцип относительности, догадку о законе инерции и всемирном тяготении. Ещё более смелую систему мира предложил в 1580-е годы Джордано Бруно, у которого не только Земля, но и Солнце — рядовое светило.

Симон Стевин в книгах «Десятая» (1585), «Начала статики» и других ввёл в обиход десятичные дроби, сформулировал (независимо от Галилея) закон давления на наклонную плоскость, правило параллелограмма сил, продвинул гидростатику и навигацию. Любопытно, что формулу равновесия на наклонной плоскости он вывел из невозможности вечного движения (которое считал аксиомой)[23].

Галилей: создание экспериментальной физики[править | править вики-текст]

Портрет Галилео Галилея работы Оттавио Леони

Галилео Галилей прославился как изобретатель телескопа, с помощью которого совершил множество выдающихся астрономических открытий. Но не менее революционные преобразования принадлежат Галилею в механике. Почти все его труды касаются проблем механики, а последняя книга специально ей посвящена. Работы Галилея стали решающим этапом в замене аристотелевской механики новыми, реальными принципами.

Галилей сформулировал основы теоретической механики — принцип относительности, закон инерции, квадратично-ускоренный закон падения. Галилей доказал, что любое брошенное под углом к горизонту тело летит по параболе. Он изобрёл первый термометр (ещё без шкалы), исследовал колебания маятника, изобрёл первый микроскоп, оценил плотность воздуха. Одно из рассуждений Галилея представляет собой нечётко сформулированный принцип виртуальных перемещений. Большинство своих выводов Галилей делал на основании тщательно спланированных экспериментов. Опыты Галилея по изучению колебаний струны позволили Мерсенну в 1588 году обогатить акустику, связав звучащий тон не только с длиной струны, как у пифагорейцев, а также с частотой её колебаний и натяжением; заодно Мерсенн получил первую оценку скорости звука в воздухе (в метрической системе — около 414 м/сек)[24].

Открытия Галилея ясно и убедительно, хотя и в общих чертах, указали путь к созданию новой механики. Характерно, что хотя в ряде случаев Галилей ошибался (скажем, причиной приливов он считал вращение Земли), но большинство этих ошибок относятся к ситуациям, где он не мог поставить проверочный опыт[24].

Ученик Галилея Торричелли, развил идеи Галилея о движении, сформулировал принцип движения центров тяжести, решил ряд задач гидродинамики и баллистики. Он опубликовал основанные на идеях Галилея артиллерийские таблицы, однако из-за неучёта сопротивления воздуха их погрешность оказалась практически неприемлемой[24].

XVII век[править | править вики-текст]

В XVII веке интерес к науке в основных странах Европы резко возрос. Возникают первые Академии наук и первые научные журналы. Возрождаются, несмотря на противодействие католической церкви, идеи атомизма (по мнению Ватикана, эти идеи противоречили смыслу таинства причащения). Возникают совершенно новые научные идеи и усовершенствование измерительных приборов уже позволяет проверить многие из них. Особенно большую роль в истории оптики, физики и науки вообще сыграло изобретение в начале XVII века в Голландии зрительной трубы, родоначальника всех последующих оптических инструментов исследования.

Кеплер и Декарт[править | править вики-текст]

Иоганн Кеплер в 1609 году издал книгу «Новая астрономия» с двумя законами движения планет; третий закон он сформулировал в более поздней книге «Мировая гармония» (1619). Заодно он формулирует (более чётко, чем Галилей) закон инерции: всякое тело, на которое не действуют иные тела, находится в покое или совершает прямолинейное движение. Менее ясно формулируется закон всеобщего притяжения: сила, действующая на планеты, проистекает от Солнца и убывает по мере удаления от него, и то же верно для всех прочих небесных тел. Источником этой силы, по его мнению, является магнетизм в сочетании с вращением Солнца и планет вокруг своей оси. Кеплер также значительно продвинул оптику, в том числе физиологическую (выяснил роль хрусталика, верно описал причины близорукости и дальнозоркости). Он существенно доработал теорию линз, выведя приближённую формулу связи расстояний объекта и его изображения с фокусным расстоянием линзы.

Рене Декарт

В 1637 году Рене Декарт издал «Рассуждение о методе» с приложениями «Геометрия», «Диоптрика», «Метеоры». Декарт считал пространство материальным, а причиной движения — вихри материи, возникающие, чтобы заполнить пустоту (которую считал невозможной и поэтому не признавал атомов), или от вращения тел. В «Диоптрике» Декарт впервые дал правильный закон преломления света. Он создал аналитическую геометрию и ввёл современную математическую символику. Декарт заявил о единстве земной и небесной физики: «все тела, составляющие Вселенную, состоят из одной и той же материи, бесконечно делимой и в действительности разделённой на множество частей»[25].

В 1644 году вышла книга Декарта «Начала философии». В ней провозглашается, что изменение состояния материи возможно только при воздействии на неё другой материи. Это сразу исключает возможность дальнодействия без ясного материального посредника. В книге приводятся закон инерции и закон сохранения количества движения. Количество движения Декарт правильно определил как пропорциональное «количеству вещества» и его скорости, но без учёта его векторной направленности[26].

Декарт уже видел, что движение планеты — это ускоренное движение. Вслед за Кеплером Декарт считал: планеты ведут себя так, как будто существует притяжение Солнца. Для того чтобы объяснить притяжение, он сконструировал механизм Вселенной, в которой все тела приводятся в движение толчками вездесущей, но невидимой, «тонкой материи». Лишённые возможности двигаться прямолинейно из-за отсутствия пустоты, прозрачные потоки этой среды образуют в пространстве системы больших и малых вихрей. Вихри, подхватывая более крупные, видимые частицы обычного вещества, формируют круговороты небесных тел, вращают их и несут по орбитам. Внутри малого вихря находится и Земля. Круговращение стремится растащить прозрачный вихрь вовне, при этом частицы вихря прижимают видимые тела к Земле. По Декарту, это и есть тяготение[25].

Физика Декарта была первой попыткой описать в единой системе все типы явлений как механическое движение. Многое в этой системе (например, принцип близкодействия) актуально и сейчас, однако Декарт сделал методологическую ошибку, требуя при исследовании явления сначала непременно выяснить его «главные причины», а уже потом строить математическую модель. Это был шаг назад, из-за такого подхода в трудах Декарта и его последователей («картезианцев») содержится не меньше ошибок и умозрительных фантазий, чем у Аристотеля. Галилей и Ньютон поступили наоборот — сначала строили математическую модель, а затем, если данных достаточно, выдвигали предположения о «первопричинах» («сначала анализ, потом синтез»). Этот подход оказался более продуктивным. Например, для тяготения — от создания Ньютоном математической модели до выяснения Эйнштейном физической сущности тяготения прошло более двух столетий[25][26].

Создание классической механики: Гюйгенс и Ньютон[править | править вики-текст]

Христиан Гюйгенс

В 1673 году вышла книга Христиана Гюйгенса «Часы с маятником».В ней Гюйгенс приводит (словесно) несколько важнейших формул: для периода колебаний маятника и для центростремительного ускорения; неявно используется даже момент инерции. В другой работе (1669 год) Гюйгенс впервые сформулировал (для частного случая ударного столкновения) закон сохранения энергии: «При соударении тел сумма произведений из их величин [весов] на квадраты их скоростей остается неизменной до и после удара». Вопрос о том, какая величина (импульс mv или «живая сила» mv^2) сохраняется при движении, вызвал горячие споры, продолжавшиеся до середины XVIII века. Гюйгенс довольно точно измерил величину ускорения силы тяжести[26].

Завершающим шагом в создании классической механики стало появление в 1687 году книги Ньютона «Математические начала натуральной философии». В ней введено понятие массы, изложены три закона механики и закон всемирного тяготения, на их основе решается большое число прикладных задач. В частности, Ньютон строго доказал, что все три закона Кеплера вытекают из ньютоновского закона тяготения; он также показал, что модель Декарта, которая объясняла движение планет эфирными вихрями, не согласуется с третьим законом Кеплера и неприменима к движению комет[27]. Наука динамика, созданная Ньютоном, позволяла принципиально определить движение любого тела, если известны свойства среды и начальные условия. Для решения возникающих при этом уравнений возникла и стала быстро развиваться математическая физика.

Свои рассуждения Ньютон сопровождает описанием опытов и наблюдений, убедительно подтверждающих его выводы. Кроме механики, Ньютон заложил основы оптики, небесной механики, гидродинамики, открыл и далеко продвинул математический анализ. Изложенные Ньютоном законы имеют всеобщий характер, так что исчезли основания для разделения физики на земную и «небесную», а система Коперника—Кеплера получила прочную динамическую основу. Этот успех подтверждал распространённое среди физиков мнение, что все процессы во Вселенной имеют в конечном счёте механический характер.

Физические концепции Ньютона находились в резком противоречии с декартовскими. Ньютон верил в атомы, считал «поиск первопричин» вторичным методом, которому должны предшествовать эксперимент и конструирование математических моделей. Например, ньютоновская теория тяготения, в которой притяжение существовало без материального носителя и без механического объяснения, долгое время отвергалась учёными континентальной Европы (в том числе Гюйгенсом, Эйлером и др.). Только во второй половине XVIII века, после работ Клеро по теории движения Луны и кометы Галлея, критика утихла[28]. Хотя метафизические фантазии кое-где встречались и в последующем, всё же, начиная с XVIII века, основным методом познания в физике становится метод Галилея и Ньютона — проведение опытов, выявление по их результатам объективных узловых физических понятий («сил природы», как выражался Ньютон), математическое описание взаимосвязи этих понятий (чаще всего в форме дифференциальных уравнений) и теоретический анализ полученной модели[29].

Оптика[править | править вики-текст]

Опыт Ньютона по разложению белого света

В оптике продолжались споры сторонников корпускулярной и волновой природы света. В 1676 году Оле Рёмер получил первую оценку скорости света. В 1665 году итальянский физик Гримальди опубликовал описание дифракции света, а в 1668 году было открыто двойное лучепреломление. Гюйгенс в «Трактате о свете» построил первую качественную и отчасти математическую модель световых волн — ещё несовершенную, так как она не могла объяснить ни дифракции, ни прямолинейного распространения света.

Важным этапом в развитии оптики и астрономии стало создание Ньютоном первого зеркального телескопа (рефлектора) с вогнутым сферическим зеркалом: в нём, в отличие от чисто линзовых телескопов, отсутствовала хроматическая аберрация. Ньютон также опубликовал теорию цветности, хорошо проверенную на опытах, и доказал, что белый солнечный свет есть наложение разноцветных составляющих. Свои представления о свойствах света (не отвлекаясь на гипотезы о его природе) Ньютон изложил в капитальной монографии «Оптика» (1704 год), на столетие определившей развитие этой науки[30].

Электричество и магнетизм[править | править вики-текст]

Экспериментальная основа знаний об электричестве и магнетизме к началу XVI века включала только электризацию трением, свойство магнетита притягивать железо и способность намагниченной стрелки компаса указывать направление север—юг. Около XV века (возможно, и раньше) европейские мореплаватели выяснили, что стрелка компаса указывает не точно на север, а направлена к нему под некоторым углом («магнитным склонением»). Христофор Колумб обнаружил, что величина магнитного склонения зависит от географических координат, а картографы показали, что причиной этого эффекта является существование у Земли магнитных полюсов, не совпадающих с географическими. Некоторое время эффект пытались использовать для решения важнейшей задачи определения долготы в открытом море, но безуспешно[31].

Электростатическая машина, гравюра 1750 г.

В 1600 году врач английской королевы Уильям Гильберт опубликовал результаты своих 17-летних экспериментальных исследований электрических и магнитных явлений. Он подтвердил, что Земля является магнитом. Гильберт продемонстрировал, что при любом разрезании магнита у полученных фрагментов всегда два полюса. Для изучения электрических явлений Гильберт изобрёл электроскоп, с помощью которого разделил все вещества на «электрики» (то есть электризуемые, в современной терминологии — диэлектрики) и «не-электрики» (например, проводники, заряды на которых через руки экспериментатора уходили в землю). Именно У. Гильберт придумал термин «электричество»[31].

Отто фон Герике в 1672 году опубликовал собственные результаты экспериментов. Он изобрёл довольно мощную электростатическую машину (вращающийся шар из серы, электризуемый прижатой рукой) и впервые отметил явление бесконтактного переноса электризации от заряженного тела другому, расположенному неподалёку (или соединённому с первым телом льняной ниткой).

Декарт построил первую теорию магнетизма: вокруг магнита циркулируют потоки винтообразных эфирных частиц двух типов, с противоположной резьбой. Эти потоки вытесняют воздух между двумя магнитами, в результате чего они притягиваются; аналогично Декарт объяснил притяжение железа к магниту. За электростатические явления аналогично ответственны частицы лентообразной формы[32]. Модель Декарта, за неимением лучшей, просуществовала почти до конца XVIII века[31].

Рождение теории газов и другие достижения[править | править вики-текст]

В 1647 году Блез Паскаль испытал первый барометр (изобретённый Торричелли) и выяснил, что давление воздуха падает с высотой. Отто фон Герике в 1669 году изобрёл воздушный насос, провёл серию эффектных опытов («магдебургские полушария») и окончательно опроверг мнение Аристотеля, что «природа боится пустоты». Существование атмосферного давления с этого момента полностью доказано. Опыты Герике заинтересовали английских физиков Роберта Бойля и Роберта Гука, которые значительно усовершенствовали насос Герике и сумели сделать с его помощью множество новых открытий, включая связь между объёмом и давлением газа «закон Бойля-Мариотта».

В других трудах Бойль утверждает, что материя состоит из мелких частиц (корпускул, в современной терминологии — молекул), определяющих химические свойства вещества, и химические реакции сводятся к перестановке таких частиц. Он также обосновал кинетический характер теплоты, то есть её глубокую связь с хаотическим движением частиц тела: при нагревании скорость этих частиц увеличивается[33].

Книга Бойля «Новые физико-механические эксперименты касательно упругости воздуха» получила широкую известность, исследованием свойств газов и их практическим применением занялись крупнейшие физики Европы. Дени Папен построил первый набросок парового двигателя («котёл Папена») и «паровую повозку»[34].

Из других важных открытий XVII века следует назвать закон Гука (1678 год), связывающий растяжение упругого тела с приложенной силой.

XVIII век[править | править вики-текст]

В XVIII веке начинается выпуск сводных и специализированных научных журналов, количество и тиражи научных изданий показывают постоянный быстрый рост. Ускоренными темпами развивались механика, небесная механика, учение о теплоте. Физики-экспериментаторы теперь располагают множеством измерительных инструментов приемлемой точности и средствами изготовления недостающих приборов. Начинается исследование электрических и магнитных явлений. Повысился престиж науки, лекции видных учёных привлекают толпы любознательного народа. Смысл термина «физика» сузился, из сферы этой науки были выделены астрономия, геология, минералогия, техническая механика, физиология. Картезианство, не подтверждаемое опытом, быстро теряет сторонников; Даламбер в 1743 году иронически называет картезианцев «почти не существующей сектой»[35].

Первоначально теоретическая и прикладная физика развивались в значительной степени независимо — например, в изобретении очков не участвовали теоретики-оптики. С XVIII века взаимодействие теории с практикой начинает становиться более интенсивным, хотя в разных разделах физики ситуация разная — в более развитых разделах взаимодействие более заметно. Например, термодинамика делала только первые шаги, и паровая машина была построена без помощи теоретиков (1784 год), а вот развитие оптического приборостроения в XVIII веке уже существенно опирается на хорошо развитую теорию[35].

Механика[править | править вики-текст]

Создание аналитической механики начал Эйлер в 1736 году; он исследовал не только движение материальной точки, но и произвольного твёрдого тела. Лагранж) в труде «Аналитическая механика» (1788) завершил превращение теоретической механики в раздел математического анализа. Дальнейшим развитием теоретической механики занимаются в основном математики[36]. Утверждается общее мнение, что все физические процессы — в конечном счёте проявления механического движения вещества.

Создание динамики жидкостей и газов связано с пионерской работой Даниила Бернулли «Гидродинамика» (1738 год). В этой работе Бернулли с механических позиций исследовал разнообразные виды движения жидкостей и газов, дал фундаментальный «закон Бернулли», впервые ввёл понятие механической работы. Многие рассуждения Бернулли опираются на закон сохранения энергии («живой силы»). Работы Бернулли продолжил Эйлер, который в 1755 году опубликовал основы аналитической механики жидкостей. Эйлер разработал общую теорию турбин, мельничных колёс и иных механизмов, приводимых в движение текущей водой; важные практические усовершенствования по этой теме выполнил английский инженер Джон Смитон (1759 год)[36].

Электричество и магнетизм[править | править вики-текст]

В первой половине XVIII века единственным источником электричества служила электризация трением. Первый существенный вклада в электростатику сделал Стивен Грей, исследовавший передачу электричества от одного тела к другому. Серией опытов он доказал, что электрические заряды располагаются на поверхности электризуемого тела. В 1734 году французский учёный Шарль Франсуа Дюфе обнаружил, что существуют два вида электричества: положительное и отрицательное (сам он использовал термины «стеклянное» и «смоляное»). Дюфе также впервые высказал предположение об электрической природе грома и молнии и о том, что электричество играет скрытую, но значительную роль в физических процессах. Из-за скудной опытной базы никаких серьёзных теорий о сущности электричества в этот период не появилось[37].

Эксперимент Бенджамина Франклина с молнией

Перелом наступил в 1745 году, когда был изобретён более мощный источник электричества — лейденская банка. Сразу во многих странах началось изучение свойств электрического тока. Наиболее глубокие исследования выполнил американский политик и физик-любитель Бенджамин Франклин; его «Опыты и наблюдения над электричеством» произвели сенсацию и были переведены на многие европейские языки. Франклин убедительно доказал гипотезу Дюфе об электрической природе молнии и объяснил, как защититься от неё с помощью изобретённого им громоотвода. Он стал первым, кто сумел превратить электричество в механическое движение, правда, весьма кратковременное (на период разряда лейденской банки). Франклин предположил (1749 год), что существует какая-то связь электричества с магнетизмом, так как зарегистрирован случай, когда молния поменяла полюса магнита[37].

Франклин предложил и первую теорию: электричество есть, по его мнению, особая субстанция из мельчайших частиц, подобная жидкости. Она притягивается к обычному веществу и может входить внутрь его, но отталкивается сама от себя. Разные материалы могут вместить в себе разное количество электричества, при этом они становятся окружены некой «электрической атмосферой». Мнения учёных о модели Франклина разделились: была резкая критика, но были и сторонники, среди которых — видный немецкий физик Эпинус. Эпинус был известен тем, что открыл пироэлектричество, изобрёл электрофор и предсказал закон Кулона за 20 лет до Кулона. Эпинус также предположил, что разряд лейденской банки имеет колебательный характер. Эйлер в особую электрическую жидкость не верил и приписывал электрические явления процессам сгущения/разрежения в эфире[37].

Вольта демонстрирует своё изобретение Наполеону. Париж, 1800 г.

Конец века ознаменовался двумя этапными событиями в истории электричества. В 1785 году появился первый из мемуаров Кулона, в них был описан и обоснован точными опытами закон Кулона. В 1791 году итальянский врач Луиджи Гальвани опубликовал трактат об открытом им «животном электричестве»: лапка лягушки, подвешенная латунным крючком к железной решётке, самопроизвольно подёргивалась. Итальянский физик Алессандро Вольта вскоре обнаружил, что лягушка в этом опыте служит только индикатором тока, а фактическим источником является контакт двух разнородных металлов в электролите. Проведя ряд опытов, Вольта сконструировал мощный источник постоянного тока — «вольтов столб», первую электрическую батарею (1800 год). С его помощью были сделаны решающие открытия электромагнитных свойств в следующем, XIX веке[37].

В деле изучения магнетизма прогресс был менее заметен. Появились несколько феноменологических теорий, претендовавших на объяснение свойств магнитов. Эйлер в 1744 году опубликовал свою теорию магнетизма, предположив, что он вызван некой «магнитной жидкостью», струящейся в магните и железе через особые «магнитные поры». Аналогичная жидкость фигурировала в альтернативной теории Франклина и Эпинуса. Последний, однако, считал эту жидкость общим носителем электричества и магнетизма. Кулон присоединился к Эпинусу и отверг теории, в которых участвует «поток магнитной жидкости», поскольку он не может объяснить стабильность направления стрелки компаса. Он предположил (1784), что притяжение и отталкивание магнитов вызвано силой, подобной ньютоновскому тяготению[37].

Теплота[править | править вики-текст]

Представление о «тонкой материи огня», переносящей тепло, в XVIII веке сохранилось и даже расширилось. В существования теплорода, носителя теплоты, верили многие физики, начиная с Галилея; однако другой лагерь, в который входили Роберт Бойль, Роберт Гук, Даниил Бернулли и М. В. Ломоносов, придерживался молекулярно-кинетической гипотезы. Обе гипотезы носили качественный характер, что не позволяло осуществить их сравнение и проверку. Некоторые учёные считали, что тепло, электричество и магнетизм представляют собой видоизменения одной и той же эфирной материи. Истинную природу процесса горения как реакции окисления раскрыл только Лавуазье в 1780-е годы[38].

В начале века немецкий физик Габриель Фаренгейт изобрёл термометр на ртутной или спиртовой основе, и предложил шкалу Фаренгейта (точнее, первый её вариант, позднее им же скорректированный). До конца века появились и другие варианты температурной шкалы: Реомюра (1730), Цельсия (1742) и другие. С этого момента открывается возможность точного измерения количества тепла в опытах. Бенджамин Томпсон (граф Румфорд) в ряде тонких опытов показал, что нагрев или охлаждение тел не влияет на их вес. Он также обратил внимание на значительный нагрев при сверлении металла; сторонники теплорода объясняли этот эффект повышением плотности теплорода в детали при отделении от неё стружек, однако Румфорд показал, что теплоёмкость стружек такая же, как у заготовки. Тем не менее гипотеза теплорода сохранила многочисленных сторонников даже в начале XIX века[38].

Фаренгейт исследовал проблему: какая температура установится в результате смешения двух порций неодинаково нагретой воды. Он предполагал, что температура смеси будет средним арифметическим из температур компонентов, но опыты опровергли это предположение. Хотя этим вопросом занимались многие физики, проблема оставалась нерешённой до создания в конце века теории теплоёмкости[38].

Другие достижения[править | править вики-текст]

Создание математического анализа дало возможность исчерпывающим образом изучить колебания струны, поэтому в XVIII веке акустика, подобно механике, становится точной наукой. Уже в начале века Жозеф Совёр установил длину волны всех музыкальных тонов и объяснил происхождение обертонов (открытых в 1674 году)[39].

В оптике, под влиянием ньютоновской критики, волновая теория света в течение XVIII века почти потеряла сторонников, несмотря на решительную поддержку Эйлера и некоторых других авторитетов. Из новых достижений можно упомянуть важное для астрономов изобретение фотометра (1760) и создание Джоном Доллондом в 1757 году первого ахроматического объектива, оказавшегосяся особенно полезным для создания телескопов-рефракторов и микроскопов. В конце века Джон Гершель в опытах по дисперсии открыл инфракрасные лучи, передающие тепло и по своим свойствам аналогичные видимому свету[40].

XIX век[править | править вики-текст]

Промышленная революция, начавшаяся с изобретения паровой машины, и потребности военной техники стимулировали приоритетное развитие как экспериментальной, так и теоретической физики. Точные измерительные приборы появились практически во всех областях, и результаты физических опытов носят количественный характер. Разработана математическая теория погрешностей измерения, позволяющая оценить достоверность наблюдаемых физических величин. Тем не менее для истолкования огромного экспериментального материала в первой половине XIX века всё ещё часто привлекаются качественные метафизические понятия и надуманные гипотезы: теплород, электрическая и магнитная жидкости, «звуковая материя» и т. д. В течение века на их месте появляются новые понятия и физические модели: волновая теория света, кинетическая теория тепла, закон сохранения энергии, электромагнитная теория Максвелла, периодическая система элементов, основанная на атомизме. К концу века все эти теории, совместно называемые «классической физикой», получают общее признание и широкое практическое применение. Возникает также прикладная физика, ориентированная на эффективное решение конкретных технологических задач[41].

Важной особенностью периода стало постепенное укрепление мнения, что не все явления природы основаны на механическом движении. Уже второе начало термодинамики не допускало механического обоснования, поскольку из него вытекала необратимость ряда процессов, а попытки объяснить электромагнетизм как колебания эфирной среды натолкнулись на непреодолимые трудности, разрешившиеся только в XX веке с появлением теории относительности и упразднением эфира как среды-носителя[42].

Волновая теория света[править | править вики-текст]

Через сто лет после появления «Начал» ньютоновская критика волновой теории света была признана большинством учёных не только в Англии, но и на континенте. Частично это объяснялось тем, что полная математическая теория волновых колебаний была создана только в начале XIX века (Фурье). Свет считался потоком каких-то мелких корпускул[43].

Первый удар по корпускулярной (эмиссионной) теории света нанёс Томас Юнг, врач, специалист по физиологической оптике. В 1800 году он, выступая перед Королевским обществом, перечислил непреодолимые затруднения эмиссионной теории: почему все источники света испускают корпускулы с одинаковой скоростью и как получается, что часть света, падающего на тело, обычно отражается, а другая часть проходит внутрь тела? Юнг также указал, что убедительного объяснения явлениям преломления света. дифракции и интерференции Ньютон не дал. Взамен Юнг разработал волновую теорию интерференции (и ввёл сам этот термин) на основе сформулированного им принципа суперпозиции волн, аналогично объяснялась дифракция. «Опыт Юнга» впоследствии вошёл в учебники. По результатам своих опытов Юнг довольно точно оценил длину волны света в различных цветовых диапазонах. Он также построил правильную теорию цветового зрения и аккомодации[43].

Волновая теория Юнга была встречена враждебно. Как раз в это время (1808 год, Малюс, Лаплас и другие) было глубоко изучено явление двойного лучепреломления и поляризации света, воспринятое как решающее доказательство в пользу эмиссионной теории. Но тут в поддержку волновой теории выступил Огюстен Жан Френель, в то время дорожный инженер-строитель. Рядом остроумных опытов он продемонстрировал чисто волновые эффекты, совершенно необъяснимые с позиций корпускулярной теории, а его мемуар, содержащий всестороннее исследование с волновых позиций, точные количественные измерения и детальную математическую модель всех известных тогда свойств света (кроме поляризации), победил на конкурсе Парижской Академии наук 1818 года. Френель обобщил принцип Гюйгенса и сумел строго объяснить прямолинейность распространения световой волны[43].

Курьёзный случай описывает Араго: на заседании комиссии академиков Пуассон выступил против теории Френеля, так как из неё следовало, что при определённых условиях в центре тени от непрозрачного кружка мог появиться ярко освещённый участок. На следующем заседании Френель продемонстрировал членам комиссии этот эффект. С этих пор формулы Френеля для дифракции, преломления и интерференции вошли во все учебники физики. И Юнг, и Френель рассматривали свет как упругие (продольные) колебания эфира, плотность которого в веществе выше, чем в вакууме[43].

Оставалось понять механизм поляризации. Ещё в 1816 году Френель обсуждал возможность того, что световые колебания эфира не продольны, а поперечны. Это легко объяснило бы явление поляризации. Юнг в это время тоже пришёл к такой идее. Однако поперечные колебания ранее встречались только в несжимаемых твёрдых телах, в то время как эфир считали близким по свойствам к газу или жидкости. Исследование отражения поляризованного света убедило Френеля, что гипотеза о поперечности световых волн справедлива. Незадолго до тяжёлой болезни Френель представил мемуар с описанием новых опытов и полную теорию поляризации, сохраняющую значение и в наши дни. Классическая волновая оптика была завершена, поставив в то же время труднейший вопрос: что же такое эфир? Следующие почти сто лет обозначены триумфальным успехом волновой теории во всех областях[43].

Сильнейшее влияние на развитие физики имел опыт Физо (1850 год), который показал, что скорость света в текущей воде уменьшается (в эмиссионной теории, если направления света и воды совпадают, она должна была увеличиться).

Возникновение электродинамики[править | править вики-текст]

К концу XVIII века в активе физики электромагнитных явлений были уже теория атмосферного электричества Франклина и закон Кулона. Стараниями Пуассона, Гаусса и Грина в первой четверти XIX века электростатика была в основном разработана, см. уравнение Пуассона (1821 год). Пуассон ввёл также, кроме электрического, магнитный потенциал, позволяющий рассчитать статическое магнитное поле[44].

Теоретической основой этих результатов считалось существование двух типов «электрической жидкости», положительной и отрицательной; каждая из них притягивает частицы другого типа и отталкивает — своего собственного. Тело заряжено, если один из типов этой жидкости преобладает; проводниками являются те материалы, которые не оказывают электрическим жидкостям сопротивления. Сила притяжения или отталкивания подчиняется закону обратных квадратов[44].

Как уже сказано выше, в 1800 году Вольта собрал первый «вольтов столб», при помощи которого исследовал ток в замкнутых цепях. Благодаря этим первым батареям постоянного тока вскоре были сделаны два выдающихся открытия:

Опыт Ампера: два параллельных проводника притягиваются, если направление токов одинаково

Главные сенсационные события начались в 1820 году, когда Эрстед обнаружил на опыте отклоняющее действие тока на магнитную стрелку. Сообщение Эрстеда вызвало всеобщий взрыв интереса. Уже через два месяца Ампер сообщил об открытом им явлении взаимодействия двух проводников с током; он также предложил термины «электродинамика» и «электрический ток»[45]. Ампер высказал предположение, что все магнитные явления вызваны внутренними токами внутри материи, протекающими в плоскостях, перпендикулярных оси магнита.[44]. Первые теории, связывающие электричество и магнетизм (ещё в старых терминах), построили в том же году Био, Савар и позже Лаплас (см. Закон Био — Савара — Лапласа)[44].

Незамедлительно последовал новый каскад открытий:

В 1826 году Ампер издал монографию «Теория электродинамических явлений, выведенная исключительно из опыта». Он открыл электромагнит (соленоид), предсказал электрический телеграф (реализован Морзе в 1835 году). Формула Ампера для взаимодействия двух элементов тока вошла в учебники. Максвелл назвал Ампера «Ньютоном электричества»[44].

Первые метрологические стандарты, установившие единицы измерения электричества и магнетизма, разработали Гаусс и Вебер, 1830-е годы. В этот же период, благодаря Д. Ф. Даниэлю и Б. С. Якоби, появилась гальванопластика, преобразившая типографское дело, ювелирные технологии, впоследствии — выпуск аудиозаписей на пластинках.

Майкл Фарадей

Майкл Фарадей в 1831 году открыл электромагнитную индукцию, тем самым доказав, что связь электричества и магнетизма взаимна. В результате серии опытов Фарадей сформулировал (словесно) свойства электромагнитного поля, позже математически оформленные Максвеллом: электрический ток оказывает магнитное действие перпендикулярно своему направлению, а изменение магнитного потока генерирует электродвижущую силу и вихревое электрическое поле[46].

Фарадей построил первый электродвигатель и первый электрогенератор, открыв путь к промышленному применению электричества. Фарадей открыл законы электролиза, ввёл термины: ион, катод, анод, электролит, диамагнетизм, парамагнетизм и др. В 1845 году Фарадей обнаружил поворот плоскости поляризации света в веществе, помещённом в магнитное поле. Это означало, что свет и электромагнетизм тесно связаны. Позже Фарадей исследовал самоиндукцию, открытую в 1832 году американским учёным Генри, свойства диэлектриков, разряды в газах[46].

Развитие теории и применений электротехники продолжалось. В 1845 году Кирхгоф установил законы распределения токов в сложных электрических цепях. В 1874 году Н. А. Умов исследовал понятие потока энергии в произвольной среде, а в 1880-е годы Пойнтинг и Хевисайд развили эту теорию применительно к электромагнитному полю[47].

Промышленные модели электродвигателей и электрогенераторов со временем становились всё более мощными и технологичными; постоянный ток был заменён на переменный. К концу века неисчерпаемые возможности электричества, благодаря совместным усилиям физиков-теоретиков и инженеров, нашли самое широкое применение. В 1866 году запущен трансатлантический электротелеграф, в 1870-е годы изобретен телефон, в 1880-е годы — лампа накаливания.

Теория электромагнитного поля[править | править вики-текст]

Силы, введенные Ампером, как и у Ньютона, считались дальнодействующими. Это положение решительно оспорил Майкл Фарадей, который с помощью убедительных опытов показал: электрические и магнитные силы перетекают непрерывно от точки к точке, образуя соответственно (взаимосвязанные) «электрическое поле» и «магнитное поле». Понятие «поля», введенное Фарадеем, стало его главным вкладом в физику. Однако учёные того времени, уже свыкшиеся с дальнодействием ньютонового притяжения, теперь уже к близкодействию относились с недоверием.

После открытий Фарадея стало ясно, что старые модели электромагнетизма (Ампер, Пуассон и др.) существенно неполны. Вскоре появилась теория Вебера, основанная на дальнодействии. Однако к этому моменту вся физика, кроме теории тяготения, имела дело только с близкодейственными силами (оптика, термодинамика, механика сплошных сред и др.). Гаусс, Риман и ряд других учёных высказывали уверенность, что свет имеет электромагнитную природу, откуда следовало, что теория электромагнитных явлений тоже должна быть близкодейственной[46]. Важным фактором стала и глубокая разработка к середине XIX века теории дифференциальных уравнений в частных производных для сплошных сред — по существу был готов математический аппарат теории поля. В этой атмосфере и появилась теория Максвелла, которую её автор скромно называл математическим пересказом идей Фарадея[46].

В первой работе (1855—1856) Максвелл дал ряд уравнений в интегральной форме для постоянного электромагнитного поля на основе гидродинамической модели (силовые линии соответствовали трубкам тока жидкости). Эти уравнения вобрали всю электростатику, электропроводность и даже поляризацию. Магнитные явления моделируются аналогично. Во второй части работы Максвелл, уже не приводя никаких аналогий, строит модель электромагнитной индукции. В последующих работах Максвелл формулирует свои уравнения в дифференциальной форме и вводит ток смещения. Он доказывает существование электромагнитных волн, скорость которых равна скорости света, предсказывает давление света. Завершающий труд Максвелла — «Трактат об электричестве и магнетизме» (1873) содержит полную систему уравнений поля в символике Хевисайда, который предложил наиболее удобный для этого аппарат — векторный анализ. Современный вид уравнениям Максвелла позже придал Герц. Гипотезы об электрической и магнитной жидкостях ушли в прошлое, вместо них появился новый физический объект — электромагнитное поле, объединяющее электричество, магнетизм и свет. Первоначально это поле трактовали как механические процессы в упругом эфире[47].

Часть физиков выступила против теории Максвелла (особенно много возражений вызвала концепция тока смещения). Гельмгольц предложил свою теорию, компромиссную по отношению к моделям Вебера и Максвелла, и поручил своему ученику Генриху Герцу провести её проверку. Однако опыты Герца (1885—1889 годы) однозначно подтвердили правоту Максвелла[47].

Уже в 1887 году Герц построил первый в мире радиопередатчик (вибратор Герца); приёмником служил резонатор (разомкнутый проводник). В том же году Герц обнаружил ток смещения в диэлектрике (заодно открыв фотоэффект). В следующем году Герц открыл стоячие электромагнитные волны, позже с хорошей точностью измерил скорость распространения волн, обнаружил для них те же явления, что и для света — отражение, преломление, интерференция, поляризация и др.

В 1890 году Бранли изобрёл чувствительный приёмник радиоволн — когерер и ввёл в обиход термин «радио». Когерер ловил радиоволны на расстоянии до 40 метров (Оливер Лодж, 1894), а с антенной — намного дальше. Спустя ещё несколько лет Попов и Маркони предложили соединить когерер с электрозвонком, создав первый аппарат для радиосвязи. В XX веке началась эра радио.

Термодинамика, газы, строение вещества[править | править вики-текст]

Успехи химии и невозможность взаимопревращения химических элементов стали весомым аргументом в пользу идеи Роберта Бойля о существования молекул как дискретных первоносителей химических свойств. Было отмечено, что для участников химических реакций соблюдаются некоторые весовые и объёмные соотношения; это не только косвенно свидетельствовало в пользу существования молекул, но и позволяло сделать предположения о их свойствах и структуре. Джон Дальтон ещё в начале XIX века объяснил с помощью молекулярной теории закон парциальных давлений и составил первую таблицу атомных весов химических элементов — как позже выяснилось, ошибочную, так как он исходил из формулы для воды HO вместо H2O, а некоторые соединения посчитал элементами[48].

В 1802 году Гей-Люссак и Дальтон открыли закон расширения газа при нагревании. В 1808 году Гей-Люссак обнаружил парадокс: газы соединялись всегда в кратных объёмных отношениях, например: C + O2 (по одному объёму) = CO2 (два объёма). Для объяснения этого противоречия с теорией Дальтона Авогадро в 1811 году предложил разграничить понятие атома и молекулы. Он также предположил, что в равных объёмах газов содержится равное число молекул (а не атомов, как считал Дальтон). Тем не менее вопрос о существовании атомов был спорным ещё долгое время.

В теории тепла в первой половине XIX века по-прежнему господствовал теплород, хотя уже начали появляться количественные модели теплопередачи. В 1822 году Фурье публикует «Аналитическую теорию тепла», где появляется уравнение теплопроводности. Обсуждался также компромиссный вариант: теплота есть движение частиц вещества, но передаётся это движение через теплород (иногда отождествляемый с эфиром). В рамках теории теплорода была написана книга Сади Карно «Размышления о движущей силе огня и о машинах, способных развивать эту силу» (1824), фактически содержащая два начала термодинамики. В это же время начинают формироваться современные понятия работы и энергии (термин предложен Юнгом в 1807 году, первоначально только для кинетической энергии[49]). Джеймс Джоуль, проведя серию опытов с электричеством (1843 год), пришёл к выводу: «во всех случаях, когда затрачивается механическая сила, всегда получается точно эквивалентное количество тепла». Он подсчитал величину этого эквивалента: около 460 кГм/ккал. Позднее Джоуль подтвердил этот вывод экспериментами со сжатием газов и объявил, что теплота есть механическое движение, а теплопередача есть переход этого движения в иные формы. Обобщая, Майер и Джоуль формулируют закон сохранения энергии, а Гельмгольц в своей монографии (1847 год) кладёт этот закон в основу всей физики[50].

Рудольф Клаузиус

Работы по кинетике газов, почти заброшенной в первой половине XIX века, начали Крёниг[en] (1856) и Рудольф Клаузиус. Последний предложил правильную модель идеального газа и объяснил фазовые переходы. В середине XIX века Уильям Томсон (лорд Кельвин) и Клаузиус сформулировали в ясном виде два закона (начала) [[термодинамика|термодинамики]]. Понятие теплорода было окончательно похоронено, Рэнкин и Томсон ввели взамен общее понятие энергии (1852), уже не только кинетической. Название «термодинамика» для раздела физики, занимающегося превращением энергии в макроскопических телах, было предложено Томсоном. После 1862 года Клаузиус исследовал необратимые процессы, не укладывающиеся в механическую модель, и предложил понятие энтропии. Начинается широкое обсуждение проблемы «тепловой смерти Вселенной», вызванное тем, что принцип возрастания энтропии несовместим с вечностью Вселенной[51].

Максвелл в 1860 году вывел статистический закон распределения скоростей молекул газа, получил формулы для внутреннего трения и диффузии, создал набросок кинетической теории теплопроводности[51].

Людвиг Больцман

Дальнейшие успехи кинетической теории газов и термодинамики во многом связаны с Людвигом Больцманом и Ван дер Ваальсом. Помимо прочего, они пытались вывести законы термодинамики на базе механики, и неудача этих попыток для необратимых процессов вынудила Больцмана предположить (1872 год), что второе начало термодинамики имеет не директивно-точный, а статистический характер: тепло может перетекать и от холодного тела к горячему, просто обратный процесс гораздо более вероятен. Более 20 лет эта догадка не вызывала интереса среди физиков, затем развернулась оживлённая дискуссия. Примерно с 1900 года, после работ Планка, Гиббса, Эренфеста и других, идеи Больцмана получили признание. С 1871 года Больцман (и позже Максвелл) развивают статистическую физику. Чрезвычайно плодотворной оказалась эргодическая гипотеза (средние по времени совпадают со средними по ансамблю частиц)[51].

Кроме открытия электрона (см. ниже), решительным аргументом в пользу атомистики стала теория броуновского движения (Эйнштейн, 1905). После работ Смолуховского и Перрена, подтвердивших эту теорию, даже убеждённые позитивисты уже не оспаривали существование атомов. Начались первые попытки согласовать с атомной теорией периодическую систему элементов, разработанную в 1869 году Д. И. Менделеевым, но реальные успехи в этом направлении были достигнуты уже в XX веке.

Открытие электрона, радиоактивность[править | править вики-текст]

Чтобы связать атомную гипотезу с электрическими явлениями, Берцелиус и Фарадей предположили, что имеются два типа атомов, с положительными и отрицательными зарядами. Из этого следовало существование наименьшего электрического заряда. Стоуни предложил термин «электрон» (1874) и дал неплохую оценку его заряда. Были и другие гипотезы, например, У. Праут считал, что раз атомные веса элементов кратны атомному весу водорода, то существует один первичный атом — водорода, а все прочие состоят из сцеплённых первичных атомов. Крукс предположил, что существует нулевой первоэлемент — «протил», составляющий и водород, и прочие элементы, а Вильям Томсон считал атом стабильным вихрем в эфире.

Ещё ранее, в 1858 году, при исследовании электрического разряда в газе были открыты катодные лучи. После долгих дискуссий учёные пришли к выводу, что это и есть поток электронов. В 1897 году Дж. Дж. Томсон измерил отношение заряд/масса для катодных лучей и доказал, что оно не зависит от материала катода и других условий опыта. Предположив, что заряд электрона совпадает с (уже известным) зарядом иона водорода, Томсон получил оценку массы электрона. Ко всеобщему удивлению, она оказалась во много раз меньше массы атома водорода. Гипотезу Берцелиуса-Фарадея пришлось отвергнуть. Томсон показал также, что частицы, излучаемые при фотоэффекте, имеют такое же отношение заряд/масса и, очевидно, тоже являются электронами. Экспериментально определить заряд и массу электрона удалось в 1910 году Роберту Милликену в ходе остроумного опыта.

В 1878 году Гендрик Лоренц обобщил теорию Максвелла для подвижных сред, содержащих ионы. Электронная теория Лоренца хорошо объясняла диамагнетизм, процессы в электролите, движение электронов в металле, а также открытый в 1896 году эффект Зеемана — расщепление спектральных линий, излучаемых веществом, находящимся в магнитном поле.

Решающие открытия были совершены в 1895-м (рентгеновские лучи) и 1896-м годах (радиоактивность урана). Правда, волновая природа X-лучей была окончательно доказана только в 1925 году (Лауэ, дифракция в кристаллах), но предполагалась многими и ранее. А вот радиоактивность поставила физиков в тупик и подверглась активному исследованию.

Вскоре были открыты радий, торий и др. активные элементы, а также неоднородность излучения (альфа- и бета-лучи открыл Резерфорд в 1899-м, а гамма-лучи — Вилар в 1900-м). Природа бета-лучей стала ясна сразу, когда Беккерель измерил их отношение заряд/масса — оно совпало с таковым для электрона. Природу альфа-частиц разгадал Резерфорд только в 1909 году.

В 1901 году Вальтер Кауфман обнаружил (предсказанное Хевисайдом и Дж. Дж. Томсоном) возрастание инертной массы электрона с ростом его скорости. Год спустя Резерфорд и Содди сделали вывод, что «радиоактивность есть атомное явление, сопровождаемое химическими изменениями». В 1903 году они открыли экспоненциальный закон распада радиоактивного атома, оценили внутриатомную энергию как неизмеримо превышающую любую химическую, и выдвинули гипотезу, что именно она является источником энергии Солнца.

В этом же году Уильям Рамзай и Содди обнаружили первые трансмутации элементов (радона в гелий), а Дж. Дж. Томсон дал первое обоснование периодической системе элементов с позиций электронной теории.

Другие достижения[править | править вики-текст]

Уильям Гамильтон в 1834—1835 годах опубликовал вариационный принцип, имеющий универсальный характер. Этот принцип был успешно использован в самых разных разделах физики[52]). Гамильтон положил этот принцип в основу своей «гамильтоновой механики». «Эти работы легли в основу всего развития аналитической механики в XIX веке»[53].

В оптике главным событием стало открытие спектрального анализа (1859 год).

XX век[править | править вики-текст]

В начале XX века физика столкнулась с серьёзными проблемами. Начали возникать противоречия между старыми моделями и эмпирическим опытом. Так, например, наблюдались противоречия между классической механикой и электродинамикой при попытках измерить скорость света. Выяснилось, что она не зависит от системы отсчёта. Физика того времени также была неспособна описать некоторые микроэффекты, такие, как атомные спектры излучений, фотоэффект, энергетическое равновесие электромагнитного излучения и вещества. Таким образом, была необходима новая физика.

Теория относительности[править | править вики-текст]

В 1728 году английский астроном Брэдли открыл аберрацию света: все звёзды описывают на небосводе малые круги с периодом в один год. С точки зрения эфирной теории света это означало, что эфир неподвижен, и его кажущееся смещение (при движении Земли вокруг Солнца) по принципу суперпозиции отклоняет изображения звёзд.

Френель, однако, допускал, что внутри вещества эфир частично увлекается. Эта точка зрения, казалось, нашла подтверждение в опытах Физо, который обнаружил, что скорость света в воде меньше, чем в пустоте.

Максвелл в 1868 году предложил схему решающего опыта, который после изобретения интерферометра смог осуществить в 1881 году американский физик Майкельсон. Позже Майкельсон и Эдвард Морли повторили опыт несколько раз с возрастающей точностью, но результат был неизменно отрицательным — «эфирного ветра» не существовало.

В 1892 году Лоренц и (независимо от него) Джордж Фицджеральд предположили, что эфир неподвижен, а длина любого тела сокращается в направлении его движения. Одновременно изучался вопрос, при каких преобразованиях координат уравнения Максвелла инвариантны. Правильные формулы впервые выписали Лармор (1900) и Пуанкаре (1905), который доказал их групповые свойства и предложил назвать преобразованиями Лоренца.

В знаменитой работе «О динамике электрона» (1905) Пуанкаре также дал обобщённую формулировку принципа относительности, охватывающего и электродинамику. В этой работе есть даже 4-интервал Минковского. Тем не менее Пуанкаре продолжал верить в реальность эфира, а разработанной им математической модели не придавал объективного физического содержания, рассматривая её, в соответствии со своей философией, как соглашение («конвенцию»).

Физическая, объективная сущность модели Пуанкаре раскрылась после работ Эйнштейна. В статье (1905 года) Эйнштейн рассмотрел два постулата: общий принцип относительности и постоянство скорости света. Из этих постулатов следовали лоренцево сокращение, относительность одновременности и ненужность эфира. Были выведены также формулы преобразования Лоренца, суммирования скоростей, возрастания инерции со скоростью и т. д. Позже эта теория получила название специальной теории относительности (СТО). В том же году появилась и формула E=mc^2 — инерция определяется энергией.

В других работах этого периода Эйнштейн дал квантовую теорию фотоэффекта и теплоёмкости, теорию броуновского движения, эффекта Эйнштейна — де Хааза (молекулярных токов), статистику Бозе — Эйнштейна и др. Далее он сосредоточил свои усилия на развитии теории относительности.

Часть учёных сразу приняли СТО: Планк (1906) и сам Эйнштейн (1907) построили релятивистскую динамику и термодинамику, а Минковский в 1907 году представил математическую модель кинематики СТО в виде геометрии четырёхмерного неевклидова мира и разработал теорию инвариантов этого мира. Сам Лоренц принял СТО только к концу жизни.

С 1911 года Эйнштейн разрабатывал общую теорию относительности (ОТО), включающую гравитацию, на основе принципа эквивалентности, которую завершил в 1916 году. Проверка трёх предсказанных Эйнштейном новых эффектов показала полное согласие ОТО с опытом.

Попытки Эйнштейна и других учёных расширить ОТО, объединив гравитацию и электромагнетизм, успехом не увенчались.

Первые теории строения атома[править | править вики-текст]

После открытия электрона стало ясно, что атом имеет сложную структуру, и встал вопрос, какое место в ней занимает электрон, и какие есть ещё субатомные частицы.

Существование атомов различных масс было предложено в 1808 году Джоном Дальтоном, чтобы объяснить закон кратных отношений. Соответствие различных оценок числа Авогадро предоставила решающее доказательство для атомистической теории.

В 1904 году появилась первая модель атома, известная как модель «пудинга с изюминками», где атом представлял собой положительно заряженное тело, с равномерно перемешанными в нём электронами. Движутся они там или нет — этот вопрос был оставлен открытым. Одновременно японский физик Нагаока предложил планетарную модель, но Вин сразу указал, что круговые орбиты электронов несовместимы с классической электродинамикой: при всяком отклонении от прямой электрон должен терять энергию.

В 1909—1910 годах эксперименты Резерфорда и Гейгера по рассеянию альфа-частиц в тонких пластинках обнаружили, что внутри атома существует небольшая компактная структура — атомное ядро. От «модели пудинга» пришлось отказаться. Резерфорд предложил уточнённую планетарную модель: положительное ядро, заряд которого (в единицах заряда электрона) соответствует номеру элемента в таблице Менделеева.

Первым успехом новой теории было объяснение существования изотопов. Но были и другие модели. Дж. Дж. Томсон полагал, что взаимодействие электронов и ядра отличается от кулоновского; делались попытки привлечь теорию относительности и даже неевклидовы геометрии.

Первую успешную теорию, объяснившую спектр атома водорода, построил Нильс Бор в 1913 году. Бор дополнил модель Резерфорда постулатами неклассического характера:

  1. Существуют орбиты, на которых электрон будет стабилен (не будет терять энергию).
  2. При перескоке с одной дозволенной орбиты на другую электрон излучает или поглощает энергию, соответствующую разнице энергий орбит.

Спектр атома водорода теория Бора предсказывала точно, но для других элементов согласия не было.

В 1915 году теория Бора была дополнена Зоммерфельдом и Вильсоном; были объяснены эффект Зеемана и тонкая структура спектра водорода. Бор добавил к своим постулатам принцип соответствия, который позволил определить интенсивность спектральных линий.

В 1925 году Паули высказал гипотезу о наличии у электрона спина, а позже — принцип запрета, по которому никакие два электрона не могут иметь одинаковые квантовые числа (с учётом спина). После этого стало наконец понятно, как и почему распределяются электроны по слоям (орбитам) в атоме.

1932: Чадвик открыл нейтрон, предсказанный Резерфордом ещё в 1920-м. Структура ядра стала теперь ясна. Протон фактически был открыт в 1919 году, когда Резерфорд обнаружил расщепление атома азота при обстреле альфа-частицами; само название частицы Резерфорд придумал позднее.

В том же 1932 году в космических лучах был открыт позитрон.

Квантовая теория[править | править вики-текст]

В 1880-е годы был экспериментально получен спектр излучения абсолютно чёрного тела; распределение энергии по частотам оказалось несогласованным со всеми имевшимися теориями, особенно для длинных (инфракрасных) волн.

Правильную формулу подобрал в 1900 году Макс Планк. Несколькими неделями позже он выяснил, что эта формула может быть строго доказана, если сделать допущение, что излучение и поглощение энергии происходит порциями не меньше некоторого порога (кванта), пропорционального частоте волны. Сам Планк вначале рассматривал такую модель как чисто математический трюк; даже много позже, в 1914 году, он пытался опровергнуть собственное открытие, но безуспешно.

Эйнштейн сразу принял гипотезу квантов света, причём считал, что квантование относится не только ко взаимодействию света с веществом, но является свойством самого света. В 1905 году он построил на этой основе теорию фотоэффекта, в 1907 году — теорию теплоёмкости, которая до Эйнштейна при низких температурах расходилась с экспериментом. В 1912 году Дебай и Борн уточнили теорию теплоёмкости Эйнштейна, и согласие с опытом было достигнуто.

Наконец, в 1920-х годах были обнаружены сразу несколько существенно квантовых явлений, необъяснимых с классических позиций. Наиболее показателен был эффект Комптона — вторичное излучение при рассеянии рентгеновских лучей в лёгких газах. В 1923 году Комптон разработал теорию этого явления (основанную на работе Эйнштейна 1917 года) и предложил термин «фотон».

1923: Луи де Бройль предположил, что корпускулярно-волновой дуализм свойственен не только свету, но и веществу. Каждой материальной частице он сопоставил волну определённой частоты. Это объясняет, почему принцип Ферма в оптике похож на принцип Мопертюи, а также — почему устойчивые орбиты Бора именно таковы: только у них длина волны де Бройля укладывается на орбите целое число раз.

1925: Вернер Гейзенберг предложил использовать в теории субатомных явлений только наблюдаемые величины, исключив координаты, орбиты и т. п. Для определения наблюдаемых величин он разработал т. н. «матричную механику». Гейзенберг, Макс Борн и Йордан сформулировали правила, по которым классическим величинам сопоставлялись эрмитовы матрицы, так что каждое дифференциальное уравнение классической механики переходило в квантовое.

Бюст Эрвина Шрёдингера в Венском университете

Синтез идей де Бройля и Гейзенберга осуществил Эрвин Шрёдингер, который в 1926 году создал «волновую механику» на базе выведенного им уравнения Шрёдингера для нового объекта — волновой функции. Новая механика, как показал сам Шрёдингер, эквивалентна матричной: элементы матрицы Гейзенберга, с точностью до множителя — собственные функции оператора Гамильтона (а собственными значениями оказалась квантованная энергия). В таком виде волновая механика была удобнее матричной, и вскоре стала общепризнанной.

Первоначально Шрёдингер считал, что амплитуда волновой функции описывает плотность заряда, но этот подход был быстро отвергнут, и было принято предложение Борна (1926) истолковывать её как плотность вероятности обнаружения частицы («копенгагенская интерпретация»).

1927: Дэвиссон обнаружил дифракцию электронов, что было воспринято как подтверждение вероятностной концепции, а Гейзенберг сформулировал принцип неопределённости. Бор обобщил его до «принципа дополнительности»: корпускулярное и волновое описание явлений дополняют друг друга; если нас интересует причинная связь, удобно корпускулярное описание, а если пространственно-временная картина, то волновое. Фактически же микрообъект не является ни частицей, ни волной; эти классические понятие возникают только потому, что наши приборы измеряют классические величины. Школа Бора вообще считала, что все атрибуты атома не существуют объективно, а появляются только при взаимодействии с наблюдателем. «Нет реальности, не зависящей от способа её наблюдения» (Бор).

Многие физики (Эйнштейн, Планк, де Бройль, Бом и др.) пытались заменить копенгагенскую интерпретацию иной, но успеха не добились.

1928: Поль Дирак дал релятивистский вариант квантовой механики (уравнение Дирака) и предсказал существование позитрона, положив начало квантовой электродинамике.

1935: опубликован знаменитый парадокс Эйнштейна — Подольского — Розена.

В начале 1950-х Н. Г. Басов, А. М. Прохоров и Ч. Таунс разработали основные принципы усиления и генерации электромагнитного излучения квантовыми системами, положенные затем в основу создания принципиально новых источников излучения радиочастотного (мазеры) и оптического (лазеры) диапазонов.

В 1960 году Теодор Майман создал первый лазер (оптический квантовый генератор) на основе кристалла рубина, генерирующий импульсы монохроматического излучения на длине волны 694 нм. К настоящему времени создано большое количество лазеров с различными характеристиками – газовых, твердотельных, полупроводниковых, излучающих свет в различных частях оптического диапазона спектра.

Ко второй половине XX века в в физике сложилось представление, что все взаимодействия физической природы можно свести к всего лишь четырём типам взаимодействия:

В последнюю декаду XX века накопились астрономические данные, подтверждающие существование космологической постоянной, тёмной материи и тёмной энергии. Идут поиски общей теории поля — теории всего, которая описала бы все фундаментальные взаимодействия обобщённым физико-математическим образом. Одним из серьёзных кандидатов на эту роль является М-теория, которая, в свою очередь, — недавнее развитие теории суперструн.

Всё больше проблем связано с эволюцией Вселенной, с её ранними этапами, с природой вакуума, и, наконец, с окончательной природой свойств субатомных частиц. Частичные теории являются в настоящее время лучшим, что физика может предложить.

В течение всего XX века продолжались попытки построить квантовую теорию гравитации; основные из них — это теории суперструн и петлевая квантовая гравитация.

XXI век и новые рубежи[править | править вики-текст]

С 1970-х годов в теоретической физике наблюдается некоторое затишье, некоторые учёные даже заговорили о «кризисе физики» или даже о «конце науки»[54]. Тем не менее намечаются некоторые открытия. Так, например, проводятся попытки сравнить скорости распространения гравитационного и электромагнитного взаимодействия, которые, по предсказаниям теории относительности, совпадают. В ЦЕРНе построен и эксплуатируется Большой адронный коллайдер высоких энергий, который должен помочь проверить две фундаментальные теории: Суперсимметрия и бозон Хиггса.

Ряд физиков выделяет актуальные фундаментальные задачи, решение которых приведёт к существенному прогрессу физики[54].

  1. Разработка квантового варианта теории гравитации, построение «теории всего».
  2. Физическое (не только математическое) обоснование квантовой механики или обобщение её до теории с более понятным физическим смыслом.
  3. Найти причины «тонкой настройки Вселенной», для чего желательно свести число фундаментальных констант к минимуму.
  4. Раскрыть сущность тёмной материи и тёмной энергии, расширить экспериментальную базу космологии.

Открытие Бозона Хиггса завершает Стандартную модель[55].

Литература[править | править вики-текст]

  • Визгин В. П. Релятивистская теория тяготения (истоки и формирование, 1900—1915). — М.: Наука, 1981. 352 c.
  • Дорфман Я. Г. Всемирная история физики. С древнейших времён до конца XVIII века. — Изд. 3-е. — М.: ЛКИ, 2010. — 352 с. — ISBN 978-5-382-01091-5.
  • Дорфман Я. Г. Всемирная история физики. С начала XIX до середины XX века. — Изд. 3-е. — М.: ЛКИ, 2011. — 317 с. — ISBN 978-5-382-01277-3.
  • Кудрявцев П. С. Курс истории физики. — М.: Просвещение, 1974.
  • Спасский Б. И. История физики, в двух томах. — М.: Высшая школа, 1977.
  • Льоцци М. История физики. — М.: Мир, 1970. 464 с.

Ссылки[править | править вики-текст]

Примечания[править | править вики-текст]

  1. Физика // Физическая энциклопедия (в 5 томах) / Под редакцией акад. А. М. Прохорова. — М.: Советская Энциклопедия, 1998. — Т. 5. — ISBN 5-85270-034-7.
  2. 1 2 История физики до конца XVIII века, 2010, с. 17—19.
  3. Physics and physical technology (v. 4, pt 1, 1962) // Needham J. Science and Civilization in China. With the research assistance by Wang Ling, v 1—7, Cambridge, Univ. Press, 1954 — 1963.
  4. 1 2 История физики до конца XVIII века, 2010, с. 22—24.
  5. История физики до конца XVIII века, 2010, с. 28—29.
  6. Bose D. M., Sen S. N., Subbarayappa D. V. (editors). A Concise History of Science In India. Hyderabad: Universities Press, 2009, ISBN 978-81-7371-618-8, 980p.
  7. История физики до конца XVIII века, 2010, с. 30—34.
  8. 1 2 История физики до конца XVIII века, 2010, с. 36—39.
  9. Рожанский И. Д. Анаксагор. У истоков античной науки. М.: Наука, 1972.
  10. История физики до конца XVIII века, 2010, с. 40—41.
  11. История физики до конца XVIII века, 2010, с. 49—56.
  12. История физики до конца XVIII века, 2010, с. 42—49.
  13. 1 2 3 4 История физики до конца XVIII века, 2010, с. 58—82.
  14. 1 2 История физики до конца XVIII века, 2010, с. 56—58.
  15. Вавилов С. И. Собрание сочинений, том III, стр. 238. Изд-во АН СССР, 1952—1956.
  16. 1 2 История физики до конца XVIII века, 2010, с. 85—99.
  17. 1 2 История физики до конца XVIII века, 2010, с. 107—111.
  18. Райнов Т. И. У истоков экспериментального естествознания: Пьер де Марикур и западноевропейская наука XIII-XIV вв // Вопросы истории естествознания и техники. — 1988. — № 4. — С. 105-116.
  19. История физики до конца XVIII века, 2010, с. 74.
  20. История физики до конца XVIII века, 2010, с. 88, 103—104.
  21. 1 2 История физики до конца XVIII века, 2010, с. 114—124, 130.
  22. История физики до конца XVIII века, 2010, с. 133—134.
  23. История физики до конца XVIII века, 2010, с. 141—142.
  24. 1 2 3 История физики до конца XVIII века, 2010, с. 148—158, 223.
  25. 1 2 3 История физики до конца XVIII века, 2010, с. 136—138.
  26. 1 2 3 История физики до конца XVIII века, 2010, с. 160—168.
  27. История физики до конца XVIII века, 2010, с. 243—244, 248.
  28. Карцев В. П. Ньютон. — М.: Молодая гвардия, 1987. — С. 221—225. — (ЖЗЛ).
  29. История физики до конца XVIII века, 2010, с. 224—233.
  30. История физики до конца XVIII века, 2010, с. 200—213.
  31. 1 2 3 История физики до конца XVIII века, 2010, с. 218—222.
  32. Декарт Рене. Первоначала философии. Часть IV, §§ 133—187.
  33. История физики до конца XVIII века, 2010, с. 187—192.
  34. История физики до конца XVIII века, 2010, с. 171—179.
  35. 1 2 История физики до конца XVIII века, 2010, с. 257—266.
  36. 1 2 История физики до конца XVIII века, 2010, с. 268—278.
  37. 1 2 3 4 5 История физики до конца XVIII века, 2010, с. 280—303.
  38. 1 2 3 История физики до конца XVIII века, 2010, с. 309—326.
  39. История физики до конца XVIII века, 2010, с. 278—280.
  40. История физики до конца XVIII века, 2010, с. 332—341.
  41. История физики, XIX—XX века, 2011, с. 5—10.
  42. История физики, XIX—XX века, 2011, с. 89—93.
  43. 1 2 3 4 5 История физики, XIX—XX века, 2011, с. 11—19.
  44. 1 2 3 4 5 История физики, XIX—XX века, 2011, с. 25—37.
  45. Ранее ток назывался «гальваническим», отсюда — «гальванометр», «гальванопластика».
  46. 1 2 3 4 История физики, XIX—XX века, 2011, с. 37—54.
  47. 1 2 3 История физики, XIX—XX века, 2011, с. 94—121.
  48. История физики, XIX—XX века, 2011, с. 55—72.
  49. Смит, Кросби. The science of energy: a cultural history of energy physics in Victorian Britain. — The University of Chicago Press, 1998. — ISBN 0-226-76421-4.
  50. История физики, XIX—XX века, 2011, с. 72—84.
  51. 1 2 3 История физики, XIX—XX века, 2011, с. 122—136.
  52. Румянцев В. В. Гамильтона — Остроградского принцип // Математическая энциклопедия. Т. 1. — М.: Сов. энциклопедия, 1977. — 1152 стб. — Стб. 856—857.
  53. Сретенский Л. Н. Аналитическая механика (XIX в.) // История механики с конца XVIII до середины XX века / Под общ. ред. А. Т. Григорьяна, И. Б. Погребысского. — М.: Наука, 1972. — 411 с. — С. 7.
  54. 1 2 Lee Smolin. The trouble with physics: the rise of string theory, the fall of a science, and what comes next. Chapter 2. — London: Penguin Book, 2007. — ISBN 9780713997996.
  55. Алексей Понятов, Хиггс открыт. Что дальше? // «Наука и жизнь» №10, 2013