Квадруполь

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

В теории поля представление системы зарядов в виде некоторых квадрупо́лей, аналогично представлению её в виде системы диполей, используется для приближённого расчёта создаваемого ей поля и излучения. Более общим представлением является разложение системы на мультиполи, соответствующее разложению потенциалов в ряд Тейлора по некоторым переменным. Квадруполь — частный случай мультиполя. Квадрупольное рассмотрение системы оказывается особенно важным в том случае, когда её дипольный момент и заряд равны 0.

Электрический квадруполь[править | править вики-текст]

Квадруполь

Электрический квадруполь (от лат. quadrum — четырёхугольник, квадрат и др.-греч. πόλος — полюс), система заряженных частиц, полный электрический заряд и электрический дипольный момент которой равны нулю. Квадруполь можно рассматривать как совокупность двух одинаковых диполей с равными по величине и противоположными по направлению дипольными моментами, расположенных на некотором расстоянии друг от друга (см. рис.). На больших расстояниях от квадруполя напряженность его электрического поля убывает обратно пропорционально четвёртой степени , а зависимость от зарядов и их расположения описывается в общем случае набором из пяти независимых величин, которые, вместе составляют квадрупольный момент системы. Квадрупольный момент определяет также энергию квадруполя во внешнем электрическом поле. Квадруполь является мультиполем 2-го порядка.

Квадрупольный момент (произвольной) системы зарядов является тензором 2-го ранга в . Он представляется интегралом по пространству

,

где  — плотность зарядов в данной точке,  — модуль радиус-вектора, ,  — индексы, нумерующие координаты.

Тензор квадрупольного момента симметричен:

Его след равен нулю:

Здесь и далее используется соглашение Эйнштейна о суммировании.

Если полный заряд системы и её дипольный момент равны 0, то квадрупольный момент не зависит от выбора начала координат. В противном случае необходимо также указывать центр квадруполя — начало координат при его вычислении.

Поле квадруполя[править | править вики-текст]

На больших расстояниях поле любой в целом нейтральной системы зарядов, дипольный момент которой равен нулю, выглядит как поле некоторого (возможно, изменяющегося со временем) квадруполя или более высокого мультиполя (октуполя и т.д.). Рассмотрение системы как некоторого квадруполя может иметь смысл и тогда, когда дипольный момент и/или заряд системы не равны нулю, если раскладывать создаваемый потенциал в ряд по мультиполям. Квадрупольное излучение системы на больших расстояниях равно (в СГС)

Здесь  — скорость света,  — полная мощность излучения. Во многих случаях достаточно считать, что излучение системы складывается из дипольного, квадрупольного и магнитодипольного.

Квадрупольный потенциал имеет вид (при определении квадрупольного момента так, как описано выше):

Здесь  — радиус-вектор точки, в которой берётся потенциал, относительно центра квадруполя. является вторым членом разложения потенциала в ряд по расстоянию до начала координат.

Поле электрического квадруполя имеет ярко выраженный нецентральный характер и его удобно представлять, используя тензорную форму записи[1]:

Магнитный квадруполь[править | править вики-текст]

Гравитационный квадруполь[править | править вики-текст]

См. также[править | править вики-текст]

Примечания[править | править вики-текст]

  1. В.И. Денисов, Лекции по электродинамике §11 (2007)

Литература[править | править вики-текст]