Коаксиальный радиочастотный разъём

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Коаксиальный радиочастотный разъём (RF-разъёмы, коаксиальные соединители) — электромеханическое устройство, предназначенное для согласованного соединения коаксиального кабеля с оборудованием или сочленения двух коаксиальных кабелей друг с другом. Поскольку разъёмное соединение состоит из двух частей, все разъёмы (соединители) бывают двух видов, парных друг другу — вилки (штыревая часть) и розетки (гнездовая часть).

Присоединительные элементы, представляющие собой сборки из 2—3 вилок или розеток называются адаптерами.

Конструкция разъёмов[править | править вики-текст]

Разъёмы представляют собой заполненную диэлектриком коаксиальную линию с волновым сопротивлением, зависящим от соотношения диаметров внутреннего проводника и внутренней поверхности внешнего проводника, а также материала диэлектрика, стандартные значения волнового сопротивления 50 и 75 Ом. В качестве диэлектрика используется обычно фторопласт (политетрафторэтилен, тефлон) или полиэтилен, иногда полистирол. Гнездовые контакты разъёмов, используемых в сверхвысокочастотном диапазоне или для измерительных целей, изготавливаются из бронзы, покрытой тонким слоем серебра или золота.

Классификация разъёмов[править | править вики-текст]

  • По способу сочленения разъёмы бывают резьбовые, байонетные и врубные
  • По назначению разъёмы бывают кабельные, приборные, приборно-кабельные и устанавливаемые на печатную плату

Обозначения разъёмов[править | править вики-текст]

Российские разъёмы[править | править вики-текст]

  • 1 элемент (два знака) — буквы «СР» (Соединитель Радиочастотный)
  • 2 элемент (необязательный) — буква «Г» (герметичное исполнение)
  • 3 элемент (два знака) — номинальное значение волнового сопротивления
    • 50 — 50 Ом
    • 75 — 75 Ом
  • 4 элемент — дефис
  • 5 элемент (неопределённое количество знаков) — порядковый номер разработки
  • 6 элемент — обозначение диэлектрика
  • 7 элемент (необязательный) — буква «В» (всеклиматическое исполнение)

Некоторые специальные типы разъёмов имеют свои особые обозначения

Международные разъёмы[править | править вики-текст]

Мировые производители разъёмов используют разные системы маркировки, в одной из наиболее распространённых систем[1] обозначение разъёмов состоит из начальной буквы, трёхзначного числа и конечной буквы, например: B-212 °F, где первая буква обозначает серию разъема.

Распространённые виды разъёмов[править | править вики-текст]

Обозначение русское Обозначение международное Волновое сопр.,Ом Сечение канала, мм/мм Сочленение Предельная част., ГГц Розетка вилка
Тип-II по ГОСТ 13317-80 7/16 50 16/6,95 М27×1,5 7,5
Разъём типа II
Разъём типа II
Тип III «Экспертиза» по ГОСТ 13317-80 Тип N 50 7/3,04 М16×1 (для III), дюймовая (для N) 12,4/7,5
Разъём типа III
Разъём типа N
Тип IV «ВР» по ГОСТ 13317-80 нет аналога 50 13,5/4,1 М18×1 10/3
Разъём типа IV
Разъём типа IV
Тип V по ГОСТ 13317-80 Тип BNC 50 Ω 50 7/2,15 байонет 10
Разъём SMA типа
нет аналога Тип BNC 75 Ω 75 байонет
Тип VI «ШВР» по ГОСТ 13317-80 нет аналога 50 10/4,3 М20×1 10
Разъём типа VI
Разъём типа VI
Тип VIII по ГОСТ 13317-80 нет аналога 75 16/4,6 М27×1,5 1
Разъём типа VII
Разъём типа VII
Тип VII по ГОСТ 13317-80 нет аналога 75 13,5/2,5 М18×1 3
Разъём типа VIII
Разъём типа VIII
Тип IX «Град» по ГОСТ 13317-80 Тип SMA 50 3,5/1,52 М6×0,75(для «Град»), дюймовая (для SMA) 18
Разъём SMA типа
нет аналога Тип SMB 50 врубной 4
нет аналога Тип TNC 50 7/2,15 дюймовая резьба 11
Ряд соединителей по ВР0.364.016 ТУ Тип UHF 50 0,5 Варианты резьбы для ВР: М16×1; М16×1,5 Резьба для UHF: 5/8'-24 UNEF 2
Розетка ВР-19 М16×1
Розетка ВР-19 М16×1,5
Разъём типа ВР-19
Разъём UHF типа
Тип II по ГОСТ 20265-83 Тип C 75 Ω 75 13,5/2,5 байонет 10
Разъём C типа (50 и 75)
Тип I по ГОСТ 20265-83 Тип C 50 Ω 50 13,5/4,1 байонет 10
Телевиз. разъём IEC_169-2 75 врубной
Телевизионный разъём
Автомоб. разъём Motorola connector 75 врубной
«Тюльпан» Тип RCA 75 врубной
Разъём RCA типа
нет аналога Тип FME 50 2
FMEconnector.jpg

BNC[править | править вики-текст]

BNC-коннектор (BNC сокр. от Bayonet Neill-Concelman; Пол Нейл (Paul Neill) из Bell Labs и Карл Концельман (Carl Concelman) из Amphenol - разработчики) — электрический разъем с байонетной фиксацией, служит для подключения коаксиального кабеля c волновым сопротивлением 50 или 75 Ом и диаметром до 8 мм. Потери в таком разъёме обычно не превышают 0,3 дБ. Кабели с BNC-разъёмами применяются для соединения радиоэлектронных устройств (генераторов, осциллографов и др.приборов), а также для построения сетей Ethernet стандарта 10BASE2.

Кабельному разъёму-штеккеру соответствует приборный разъём-гнездо, устанавливаемый на корпусе устройств.

Центральная жила и оплётка коаксиального кабеля могут фиксироваться в BNC-разъёмах разной конструкции тремя способами: как пайкой, так и накруткой либо обжимом деталей разъёма на кабеле.

По форме BNC-разъёмы бывают прямыми и угловыми.

Иногда BNC расшифровывают как «Baby Neill-Concelman», «Baby N Connector», «British Naval Connector», «Bayonet Nut Connector».

Подтипы BNC[править | править вики-текст]

Т-коннектор.
Байонет
  • BNC — либо припаивается, либо обжимается на конце кабеля.
  • BNC-F — c резьбовым креплением.
  • BNC-Т (Т-коннектор) — соединяет сетевой кабель с сетевой платой компьютера в стандарте 10BASE2.
  • BNC-I и BNC-бappeл (I-коннектор) — применяются для сращивания двух отрезков тонкого коаксиального кабеля.

TNC[править | править вики-текст]

TNC разъём (слева) и BNC разъём (справа)

TNC-коннектор (Threaded Neill-Concelman) — версия BNC-коннектора с резьбой. Разъём имеет волновое сопротивление 50 Ом и подходит для частот 0-11 ГГц. Он имеет бо́льшую эффективность для СВЧ-частот, чем BNC разъём. Был разработан в конце 1950-х и назван именами разработчиков — Пола Нейла (Paul Neill) из Bell Labs и Карла Концельмана (Carl Concelman) из Amphenol, разъём TNC был принят на использование в радио- и проводной технике.

SMA[править | править вики-текст]

SMA-коннектор (Sub-Miniature version A) служит для подключения коаксиального кабеля с волновым сопротивлением 50 Ом. Разработан в 1960-х годах. Используется в СВЧ-устройствах. Разъём обладает повышенной надежностью и прочностью. Имеет резьбовое соединение 1/4"-36 (примерно М6x0,75). Вилка (разъем типа «папа») имеет 0,312-дюймовую (7,925 мм) шестигранную гайку, внутреннюю резьбу и выступающий контакт. В SMA разъемах используется политетрафторэтиленовый диэлектрик.

SMA-разъёмы рассчитаны на 500 циклов подключения-отключения, но для достижения этого необходимо правильно закручивать разъем при подключении. Для этого требуется, чтобы 5/16-дюймовый динамометрический ключ был установлен на 0,3 до 0,6 Н•м для медных и 0,8-1,1 Н•м для стальных разъёмов.

Разъёмы SMA рассчитаны на работу от постоянного тока до 18 ГГц, но некоторые версии рассчитаны на 26,5 ГГц. Для других частот используются SMA-подобные разъемы. Это 3,5-мм разъемы, рассчитанные на частоту до 34 ГГц и 2,92 мм (также известный как 2,9 мм, или К-типа), подходят до 46 ГГц. Они сохранили ту же наружную резьбу, как у SMA, поэтому все они могут быть связаны, но SMA-подобные разъёмы используют воздух как диэлектрик. Тем не менее время службы разъемов сократится при соединении разъемов с низкокачественными разъемами SMA.

RP-SMA (Reverse polarity SMA). Разъемы SMA с обратной полярностью (инверсные SMA-разъемы). В этих разъёмах: кабельная часть имеет гнездовой контакт, а приборная часть имеет штыревой контакт. Т.е. в инверсном разъеме изменена конфигурация центрального контакта с гнезда на штырь (и наоборот). RP-SMA, как и RP-N разъёмы, применяются в случае наличия постоянного напряжения в кабеле, с целью исключить выход из строя оборудования при случайном подключении измерительной техники и устройств с разъёмами SMA, не толерантных к наличию напряжения. Напряжение в кабель подают для питания выносного (уличного) модуля, усилителя или приёмо-передатчика. Для бытовых устройств напряжение на центральной жиле составляет +12 (реже +24) В, для операторских минус 48...минус 60 Вольт, так как положительное напряжение неизбежно приведёт к коррозии кабеля.

SMB[править | править вики-текст]

SMB-коннектор (Sub-Miniature version B) служит для подключения коаксиального кабеля с волновым сопротивлением 50 Ом или 75 Ом. Разработан в 1960-х годах. SMB-разъёмы меньше, чем SMA.

Разъёмы предназначены для двух типов кабеля:

  1. Кабель 2.6/50+75 S (3 мм внешний / 1.7 мм внутренний диаметр) и
  2. Кабель 2/50 S (2.2 мм внешний / 1 мм внутренний диаметр)

SSMB-разъёмы — это уменьшенная версия стандартных SMB разъемов, их волновое сопротивление — 50 Ом, рабочая частота: DC-12,4 ГГц.

SMC[править | править вики-текст]

SMC-коннектор (Sub-Miniature version C) служит для подключения коаксиального кабеля с волновым сопротивлением 50 Ом или 75 Ом. Разработан в 1960-х годах. SMC-разъёмы обеспечивают продуктивные электрические характеристики от постоянного тока до 10 ГГц и низкий уровень шума.

Разъёмы предназначены для коаксиального кабеля диаметром от 2 до 3 мм.

Разъёмы SMC имеют резьбовое крепление с числом витков резьбы от 10 до 32. SMC-разъёмы могут быть покрыты золотом, никелем, серебром и другими металлами. Применяются для соединения wi-fi оборудования с антеннами и в СВЧ-устройствах с повышенными требованиями к защите от вибраций.

FME[править | править вики-текст]

FME-коннектор служит для подключения коаксиального кабеля с волновым сопротивлением 50 Ом. Предназначены для работы на частотах до 2 ГГц включительно. Используются для соединения оконечных устройств систем подвижной связи, радиоудлинителей, сотовых терминалов и т.п. с мобильными антеннами и адаптированы к интерфейсам UHF, Mini UHF, TNC, BNC и N. Конструктив гнездовой части коннектора (rotating nipple) позволяет ей вращаться на 360° с последующей фиксацией соединения накидной гайкой, что обеспечивает гибкость при подключении мобильной аппаратуры связи.

Существуют модификации для коаксиальных кабелей RG-58, RG-59, RG-174

Применяются для подключения GSM антенн.

F[править | править вики-текст]

F разъём разработан для телевизионного оборудования. Самые дешёвые на сегодня ВЧ разъёмы, использующие центральную жилу кабеля непосредственно для соединения, работают до частот 1200 МГц. Обычно, разъёмы предназначены для коаксиального кабеля диаметром до 7 мм., но есть и варианты для 11 мм кабеля, (в них уже используют специальные вставки и насадки на центральную жилу). Резьба F разъёмов дюймовая 3/8"-32UNEF (32 нитки на дюйм).

Коаксиальные адаптеры[править | править вики-текст]

Согласованный переход BNC UHF
Несогласованный переход 50—75 Ом
Согласованный измерительный переход Э2-25

Коаксиальные переходы[править | править вики-текст]

Коаксиальный переход (коаксиальный переходник) — комбинация из двух коаксиальных разъёмов, соединённых коротким жестким отрезком коаксиальной линии. Переходы предназначены для сращивания коаксиальных кабелей между собой или для состыковки коаксиальных трактов с разным сечением канала. Кроме коаксиальных, существуют коаксиально-волноводные и коаксиально-полосковые переходы, используемые для состыковки коаксиальных каналов с волноводами или с полосковыми линиями.

Классификация переходов[править | править вики-текст]

  • Переходы одного присоединительного ряда называются одноканальными, разных присоединительных рядов — межканальными.
  • В зависимости от области применения переходы бывают общего назначения и измерительные (прецизионные), к которым применяются повышенные требования по неоднородности тракта и переходным сопротивлениям.
  • Для удобства применения переходы выпускают в разных конструктивных исполнениях — прямые и уголковые (Г-образные), измерительные переходы бывают только прямыми.

Согласование в переходах[править | править вики-текст]

  • Межканальные переходы, как правило, имеют разъёмы с одинаковым волновым сопротивлением (50 или 75 Ом), простые (несогласованные) переходы с разъёмами разного сопротивления существуют, но используются редко, обычно на низких частотах.
  • Иногда, для согласования переходов с разным волновым сопротивлением на концах, в них вставляется высокочастотный резистор, однако, это не всегда удобно, так как такой переход имеет согласование только в одну сторону, а также в нём теряется часть мощности сигнала. Чаще, для согласованного соединения двух трактов с разным сопротивлением применяются четвертьволновые или экспоненциальные трансформаторы, представляющие собой специальные переходы с отрезком линии, сечение которой меняется по длине скачкообразно (в четвертьволновых) или плавно (в экспоненциальных).

Российские измерительные переходы[править | править вики-текст]

Тип перехода Волновое сопротивление, Ом Типы каналов Частоты, ГГц
Э2-11 50 II — II до 7,5
Э2-12 75 VIII — VIII до 3
Э2-13…16 50 II — VI до 7,5
Э2-17…20 50 II — IV до 3
Э2-21…24 75 VIII — VII до 1
Э2-25…28 50 II — V до 7,5
Э2-29…32 50 VI — IV до 10
Э2-33…36 50 VI — IV до 3
Э2-37…40 50 VI — V до 10
Э2-111/1…4 50 III — II до 7,5
Э2-112/1,2 50 III — III до 18
Э2-113/1…4 50 III — IV до 3
Э2-114/1…4 50 III — V до 10
Э2-115/1…4 50 III — VI до 10
Э2-41…48 коаксиально-волноводные
Э2-107…110 коаксиально-волноводные
Э2-116 коаксиально-полосковый
Несогласованный тройник, канал тип V
Несогласованный тройник, канал тип IV
Согласованный тройник-разветвитель для сигнала частотой 668 МГц

Коаксиальные тройники[править | править вики-текст]

  • Коаксиальные тройники применяются для разветвления электромагнитного сигнала на два канала. Простые тройники не обеспечивают согласования в линии (из-за того, что две нагрузки подключаются параллельно) поэтому их используют в случаях, когда рассогласование несущественно.
  • Для разветвления электромагнитной энергии на сверхвысоких частотах иногда применяют специальные тройники, у которых плечи сделаны в виде согласующих четвертьволновых отрезков линии, однако, такие устройства могут работать только в узком диапазоне частот, для которого они предназначены.
  • Для ответвления части энергии от основного канала существуют специальные тройники, у которых одно из плеч связано с основным трактом либо через конструктивную ёмкость, либо с помощью витка связи, однако, чаще в таких случаях используется направленный ответвитель.

История[править | править вики-текст]

  • Пеpвый pадиочастотный соединитель (UHF connector) был создан E. C. Quackenbush из American Phenolic Co (позднее компания Amphenol) в начале 1940-х годов.
  • В 1958 г. J. Cheal из Bendix Research Laboratory (США) pазpаботал пеpвый миниатюpный соединитель с пpедельной частотой 10 ГГц для системы активного допплеpовского радара (с pабочей длиной волны 5,5 см). Этот соединитель получил название BRM (Bendix Research Miniature). В pезультате его усовеpшенствования фиpмой M/A-COM Omni-Spectra (США) в 1962 г. появился соединитель OSM.
  • N-соединитель разработан П. Нэйлом из Bell Labs и является первым соединителем, наиболее полно отвечающим требованиям СВЧ диапазона.

Основные нормируемые характеристики[править | править вики-текст]

  • Номинальное волновое сопротивление
  • Номинальное сечение канала и его допустимые отклонения
  • Верхняя предельная частота
  • Предельный КСВ
  • Прочность изоляции
  • Диапазон напряжений
  • Сопротивления контактов
  • Вносимые потери

См. также[править | править вики-текст]

Литература и документация[править | править вики-текст]

Литература[править | править вики-текст]

  • Справочник по элементам радиоэлектронных устройств: Под ред. В. Н. Дулина и др. — М.: Энергия, 1978
  • Краткий справочник конструктора РЭА. Под ред. Р. Г. Варламова — М.: Сов. Радио, 1972
  • Джуринский К. Б. Коаксиальные радиокомпоненты нового поколения для микроэлектронных устройств СВЧ. Справочные материалы по электронной технике — ОНТИ, 1996
  • Джуринский К. Б. Миниатюрные коаксиальные радиокомпоненты для микроэлектроники СВЧ: соединители, коаксиально-микрополосковые переходы, адаптеры, СВЧ-вводы, низкочастотные вводы, изоляционные стойки, фильтры помех — Техносфера, 2006
  • Савченко В. С., Мельников А. В., Карнишин В. И. Соединители радиочастотные коаксиальные — М.: Сов. радио, 1977, 48 с.

Нормативно-техническая документация[править | править вики-текст]

Примечания[править | править вики-текст]

Ссылки[править | править вики-текст]