Конечнопорождённая абелева группа

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Конечнопорождённая абелева группа — абелева группа, заданная конечной системой образующих, то есть такая коммутативная группа , для которой существует конечный набор , такой что существует представление:

,

где  — целые числа.

Конечнопорождённые абелевы группы имеют сравнительно простую структуру и могут быть полностью классифицированы, возможность свести к ним рассмотрение тех или иных объектов считается ценной. Примеры — целые числа и числа по модулю , любое прямое произведение конечного числа конечнопорождённых абелевых групп также является конечнопорождённой абелевой группой. Согласно теореме о классификации[⇨], других (с точностью до изоморфизма) конечнопорождённых абелевых групп — нет. Например, группа рациональных чисел не является конечнопорожденной: если бы существовало порождающая система , то достаточно взять натуральное число , взаимно простое со всеми знаменателями чисел из системы, чтобы получить , не порождаемое системой .

Классификация[править | править код]

Теорема о классификации конечнопорожденных абелевых групп (являющаяся частным случаем классификации конечнопорожденных модулей над областью главных идеалов) утверждает, что любая конечнопорождённая абелева группа изоморфна прямому произведению простых циклических групп и бесконечных циклических групп, где простая циклическая группа — это такая циклическая группа, чей порядок является степенью простого числа. Что значит, что каждая такая группа изоморфна группе вида:

,

где , и числа являются (не обязательно различными) степенями простых чисел. Значения однозначно определены (с точностью до порядка) группой , в частности, конечна тогда и только тогда, когда .

На основании того факта что будет изоморфно произведению и тогда и только тогда, когда и взаимно просты и , мы также можем представить любую конечнопорождённую группу в форме прямого произведения

,

где делит , который делит и так далее до . И снова, числа и однозначно заданы группой .

Литература[править | править код]

  • Мельников О. В., Ремесленников В. Н., Романьков В. А.  Глава II. Группы // Общая алгебра / Под общ. ред. Л. А. Скорнякова. — М.: Наука, 1990. — Т. 1. — С. 66—290. — 592 с. — (Справочная математическая библиотека). — 30 000 экз. — ISBN 5-02-014426-6.