Контаминант

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
Модель вируса SARS-CoV-2, одного из представителей семейства коронавирусов. Данный вирус высококонтагиозный и может контаминировать воду и пищевые продукты, тем самым увеличивается риск распространения коронавирусной инфекции (COVID-19)[1].
Микрофотография возбудителя смертельно опасного заболевания, ботулизма, и биологического контаминанта, бактерий Clostridium botulinum, продуцирующих сильнейшие из известных природных токсинов — ботулотоксины (ЛД50 некоторых типов ботулотоксинов составляет десятки пикограммов на 1 кг веса (40—80×10−12/кг)). На фотографии отчётливо видны так называемые «барабанные палочки» (терминально и субтерминально расположенные споры), характерные для рода Clostridium. Препарат окрашен генцианвиолетом. Излюбленными пищевыми продуктами, которые контаминируют клостридии ботулизма, являются рыбные, мясные продукты (в особенности колбасы с кровью), фруктовые, овощные и грибные консервы при недостаточной тепловой обработке и в условиях резкого снижения содержания кислорода (герметично закупоренные консервы)[2].

Контаминáнт (от лат. contaminant — примесь, также загрязняющий агент) — нежелательный биологический агент (микроорганизмы, включая и вирусы) либо химическое соединение, смесь соединений, обладающие высокой биологической активностью (аллерген, иммуносупрессор, канцероген, мутаген, тератоген, токсин или в общем случае ксенобиотик) либо радиоактивное вещество (радионуклид), присутствие которых в сырье и пищевых продуктах[3] несвойственно и, несомненно, может оказывать негативное воздействие на организм и, как следствие, нести угрозу для здоровья и жизни человека.

Термин контаминант употребляется в основном в микробиологии (синоним термина обсеменение), производстве фармацевтической продукции и в производстве пищевых продуктов[4][5][6]. В большинстве случаев загрязнение пищевого продукта контаминантами является причиной алиментарных расстройств ЖКТ у человека (пищевые интоксикации).

Контаминанты обладают высокой подвижностью и скоростью миграции и, тем самым довольно легко проникают в организм человека из внешней среды[7].

Не следует путать термины контаминант и ксенобиотик. Первый означает любой загрязняющий агент продуктов питания и попадает в организм исключительно алиментарным путём (т. е. с пищей), в то время как второй термин означает любое чужеродное вещество, попавшее в организм человека не обязательно алиментарным путём, например, воздушным (респираторным) или через кожу (трансдермально). Любой контаминант — это ксенобиотик, но не каждый ксенобиотик — это контаминант.

Биологические контаминанты[править | править код]

Колос пшеницы (справа), поражённый пшеничной паршой. Возбудителем является микроскопический плесневый гриб fusarium graminearum, продуцирующий вомитоксин.

Биологические, также природные или естественные контаминанты — нежелательные микроорганизмы (вирусы, патогенные и условно-патогенные бактерии, микроскопические грибы, простейшие, споры микромицетов итд.), а также их продукты метаболизма (например, ботулотоксин, продуцируемый Clostridium botulinum или охратоксины — группа микотоксинов, вырабатываемые некоторыми видами микроскопических плесневых грибов рода Аспергилл и Пеницилл), присутствующие в пищевых продуктах. Большое количество биологических контаминантов приходится на бактерии и их метаболитов (токсинов, антибиотиков). К этой группе можно отнести токсины морских животных, употребляемых в пищу (например, тетродотоксин из собаки-рыбы или фугу), а также токсины растений или фитотоксины (например, рицин, из ядер клещевины или амигдалин из косточек горького миндаля, абрикоса — ядовитый гликозид) и грибов (аматоксины, фаллотоксины и др.).

Бактериальные токсины[править | править код]

Бактериальные токсины загрязняют пищевые продукты и являются причиной острых пищевых интоксикаций. Рассмотрим наиболее часто регистрируемые интоксикации, связанные с поражением пищевых продуктов некоторыми бактериальными токсинами.

Энтеротоксины S.aureus[править | править код]

Золотистый стафилококк (Staphylococcus aureus), некоторые штаммы которого могут вызвать гастроэнтероколит и гемолитическую анемию, фотография сделана с помощью сканирующего электронного микроскопа.

Staphylococcus aureusграмположительные бактерии, сферической формы, которые являются причиной стафилококкового пищевого отравления. Продуцируют следующие энтеротоксины: А, В, С1, С2, D, E, которые представляют собой полипептиды с молекулярной массой 26 360–28 500 Да. Энтеротоксины S. aureus термостабильны и инактивируются лишь после 2–3-часового кипячения. Бактерицидным действием по отношению к стафилококкам обладают уксусная, лимонная, фосфорная, молочная кислоты при рН до 4,5. Кроме того, жизнедеятельность бактерий прекращается при концентрации соли (NaCl) — 12 %, сахара — 60–70 %, вакуумная упаковка также ингибирует рост бактерий. Всё это необходимо учитывать в различных технологиях консервирования, как в промышленном масштабе, так и в домашних условиях.

Наиболее благоприятной средой для роста и развития стафилококков являются молоко, мясо и продукты их переработки, а также кондитерские кремовые изделия, в которых концентрация сахара составляет менее 50 %. Стафилококковые энтеротоксины являются причиной 27–45 % всех пищевых токсикоинфекций.

Стафилококковые гастроэнтериты вызываются при приёме внутрь пищи, содержащей один или несколько энтеротоксинов, выделяемых некоторыми видами и штаммами стафилококков[18]. Хотя и считается, что выделение энтеротоксинов обычно связано со штаммами S. aureus, продуцирующих коагулазу и термонуклеазу, многие штаммы, не продуцирующие ни коагулазу, ни термонуклеазу, тем не менее выделяют энтеротоксины.

Симптомы стафилококкового пищевого отравления обычно развиваются в течение четырёх часов после приема внутрь заражённых пищевых продуктов, хотя этот интервал, по разным сообщениям, может различаться в пределах от одного до шести часов[19]. Среди симптомов обычно отмечаются такие, как тошнота, рвота, спазмы живота (которые, как правило, бывают очень сильными), диарея, выпотевание, головная боль, упадок сил, истощение, иногда снижение температуры тела — которые обычно продолжаются от 24 до 48 ч. Смертельные исходы достаточно редки или полностью отсутствуют. Как правило, для здоровых людей лечение ограничивается постельным режимом и поддержанием баланса жидкости в организме. После прекращения симптомов у переболевших не сохраняется выраженного иммунитета к повторным заражениям, хотя при неоднократном пероральном введении доз у животных появляется устойчивость к энтеротоксину[20]. Поскольку симптомы были вызваны приёмом внутрь уже сформированного энтеротоксина, понятно, что культуры из фекальных масс не содержат стафилококков, хотя это и случается редко.

Токсины C.perfringens[править | править код]

Clostridium perfringens (ранее известная как C. welchii или Bacillus welchii) представляет собой грамположительную, палочковидную, облигатно (строго) анаэробную, спорообразующую патогенную бактерию рода Клостридиум[21][22]. Является одним из возбудителей газовой гангрены и клостридиальной кишечной токсоинфекции.

Штаммы Clostridium perfringens, вызывающие пищевые отравления, обнаруживаются в почве, воде, пыли, продуктах питания, пряностях и в пищеварительных трактах человека и животных. Многие исследователи сообщали, что распространённость термоустойчивых, негемолитических штаммов в общей популяции оценивается в пределах от 2 до 6%. В экскрементах от 20 до 30% здорового персонала больниц и членов их семей были обнаружены эти организмы, а среди заболевших процент носителей этих токсигенных клостридий через две недели равнялся 50%, а иногда достигал и 88%. Термочувствительные штаммы являются обычными представителями микрофлоры желудочно-кишечного тракта у всех людей. Бактерии C. perfringens попадают в мясо либо непосредственно после забоя животных, либо в результате последующего заражения мяса животных руками людей или пылью. Поскольку клостридии являются спорообразующими бактериями, они могут противостоять неблагоприятным условиям среды, высушиванию, нагреванию и воздействию различных токсических веществ.

Кристаллическая структура С-концевого домена клостридиального энтеротоксина.

Энтеротоксин является фактором, определяющим пищевые отравления при попадании бактерий C.perfringens в организмы человека и животных. Он имеет молекулярную массу 35,3 кДа и отвечает за распад плотных контактов, образованных между эпителиальными клетками в кишечнике[23]. Необычным является то, что этот белок является споро-специфическим; его выделение происходит параллельно с процессом споруляции. Причиной всех известных случаев пищевых отравлений, вызванных этим видом бактерий, были штаммы, относящиеся к типу A. Другое заболевание, некротический энтерит, вызывается бета-токсином, производимым штаммами типа С. Это заболевание характерно для Новой Гвинеи, и весьма редки сообщения о таком отравлении за её пределами. Несмотря на то что некротический энтерит, вызываемый клостридиями типа С, связан с уровнем смертности в 35–40%, пищевые отравления, вызываемые клостридиями типа A, являются фатальными только для пожилых и ослабленных людей. Показано, что некоторые штаммы клостридий типа С продуцируют энтеротоксин, но его значение и роль в заболеваниях пока не ясны.

Ботулинистические токсины[править | править код]

Токсины Сальмонелл и Шигелл[править | править код]

Токсины Йерсений[править | править код]

Эшерихиальные токсины[править | править код]

Токсины Листерий[править | править код]

Микотоксины и токсины грибов[править | править код]

Микотоксины (от греч. μύκης, mykes, mukos — «гриб»; τοξικόν, toxikon — «яд») — это вторичные метаболиты микроскопических плесневых грибов, обладающие выраженными токсическими свойствами. Они не являются эссенциальными для роста и развития продуцирующих их микроорганизмов.

С гигиенических позиций — это особо опасные токсические вещества, загрязняющие корма и пищевые продукты. Высокая опасность микотоксинов выражается в том, что они обладают токсическим эффектом в чрезвычайно малых количествах и способны весьма интенсивно диффундировать вглубь продукта.

Афлатоксины[править | править код]

Hazard TT.svg

Афлатоксины (AF, сокр. от Aspergillus flavus toxins) — органические соединения, из группы поликетид, представляют собой одну из наиболее опасных групп микотоксинов, обладающих чрезвычайной высокой токсичностью и гепатоканцерогенностью.

Афлатоксины, несомненно, наиболее изученные из всех микотоксинов. Первые данные об их существовании относятся к 1960 году, когда внезапно и почти одновременно 100 000 индюшат погибли в Англии после употребления муки из арахиса, импортируемой из Африки и Южной Америки[24].

В настоящее время семейство афлатоксинов включает четыре основных представителя (афлатоксины B1, B2, G1, G2) и ещё более 10 соединений, являющихся производными или метаболитами основной группы (M1, M2, B2a, G2a, GM1, P1, Q1 и др.).

Продуцентами афлатоксинов являются некоторые штаммы двух видов микроскопических грибов: Aspergillus flavus (Link.) и Aspergillus parasiticus (Speare).

Структурные формулы некоторых афлатоксинов (AF)
AFG1
AFM1
AFB2
AFG2
AFM2
Плоды арахиса наиболее часто поражаются микромицетом Aspergillus flavus.

В природных условиях чаще и в наибольших количествах афлатоксины обнаруживаются в арахисе, кукурузе, семенах хлопчатника. Кроме того, в значительных количествах они могут накапливаться в различных орехах (грецкий орех, миндаль, фундук, кешью и др.), семенах масличных культур, пшенице, ячмене, зёрнах какао и кофе[25]. В кормах, предназначенных для сельскохозяйственных животных, афлатоксины также обнаруживаются достаточно часто и в значительных количествах. Во многих странах с этим связано и обнаружение афлатоксинов в продуктах животного происхождения. Например, в молоке и тканях сельскохозяйственных животных, получавших корма, загрязнённые микотоксинами, обнаружен афлатоксин М1. Причём афлатоксин М1 обнаружен как в цельном, так и в сухом молоке и даже в молочных продуктах, подвергшихся технологической обработке (пастеризация, стерилизация, приготовление творога, йогурта, сыров и т. п.).

Термическая обработка, используемая в кулинарии не способствует уменьшению концентрации афлатоксинов, ввиду того, что они устойчивы к нагреванию, даже в автоклавах при довольно высоких температурах и продолжительности процесса (t > 120° C, более 40 минут). Для разрушения афлатоксинов необходимы дополнительные мероприятия, например, использование окислителей, экстракция с полярными органическими растворителями (хлороформ, ацетон) или азеотропными смесями (оптимальный вариант — смесь воды и метоксиметана), использование раствора или газообразного аммиака, который наиболее эффективно уничтожает организмы продуценты аспергиллы и разрушает до 98% афлатоксинов.

Токсическое воздействие афлатоксинов Действие афлатоксинов на организм животных и человека может быть охарактеризовано с двух позиций. Во-первых, с точки зрения острого токсического действия и, во-вторых, с точки зрения оценки опасности отдалённых последствий. Острое токсическое действие афлатоксинов связано с тем, что они являются одними из наиболее сильных гепатропных ядов, органом-мишенью которых является печень. Отдалённые последствия действия афлатоксинов проявляются в виде канцерогенного, мутагенного и тератогенного и иммунодепрессивного эффектов.

Токсичность афлатоксина В1
 Животные Способ введения  Токсичность (LD50) в мг/кг
Утка п/о 0,5-2,0
Крысы п/о, вб 1,2-17,9 (в зависимости от пола и возраста)
Хомяки п/о 9,0-10,2
Мыши п/о 6,0-9,0
Кролики п/о ~0,5
Морские свинки   вб ~1,0
Собака п/о 0,45-0,5
 Речная форель п/о <0,5

Механизм воздействия на гепатоциты имеет сходства с механизмом воздействия ПАУ. Однако продукты гидроксилирования имеют более высокие окислительные свойства и повреждают клетки посредством нарушения структуры целостности биомембран и алкирования нуклеиновых кислот.

Схема образования ДНК-аддукта АФВ1.

В молекулах афлатоксинов большое количество атомов кислорода, вследствие этого, попадая в клетку печени и подвергаясь гидроксилированию молекулы приобретают чрезвычайно реакционноспособные свойства. Они немедленно начинают алкилировать цепи ДНК, образуя с ними прочные аддукты. Алкилирование ДНК приводит к повреждениям гена-онкосупрессора p53, вплоть до утраты к экспрессии белка[26]. Тем самым лишая гепатоцит апоптоза. Дальнейшее продолжение процесса приводит к трансформации клеток, посредством активации некоторых онкогенов, например, K-ras, вызывая гепатоцеллюлярную карциному[27].

Скорость алкилирования лимитируется концентрацией продуктов гидроксилирования, однако, даже минимальное количество причиняет серьёзные повреждения гепатоцитам. Помимо этого они обладают сильнейшей гепатотоксичностью (в особенности афлатоксин B1 — наиболее токсичный, СДЯВ, минимальная летальная доза для человека составляет менее 2 мг/кг).

Афлатоксины способны вызывать у человека острые и хронические микотоксикозы, названные афлатоксикозами. Возникновению афлатоксикозов способствует отсутствие надлежащего санитарно-эпидемиологического контроля за продуктами питания, особенно в странах с жарким и влажным климатом (страны тропической Африки, Юго-восточной Азии и Индия), где среди местного населения наблюдаются высокие показатели цирроза печени и гепатоцеллюлярной карциномы.

Отравление афлатоксинами требует безотлагательных мер медицинской помощи.

Согласно данным ВОЗ, человек при благоприятной гигиенической ситуации потребляет с суточным рационом до 0,19 мкг афлатоксинов. В России приняты следующие санитарно-гигиенические нормативы по афлатоксинам: №015/2011 о безопасности зерна и №021/2011 о безопасности пищевой продукции ПДК афлатоксина В1 для всех пищевых продуктов, кроме молока, составляет 5 мкг/кг, для молока и молочных продуктов — 1 мкг/кг (для афлатоксина М1 — 0,5 мкг/кг). Допустимая суточная доза (ДСД) — 0,005–0,01 мкг/кг массы тела. В ферментных молокосвертывающих препаратах грибного происхождения, продуктах для детей, беременных и кормящих женщин наличие афлатоксина B1 не допускается.

Трихотецены[править | править код]

Химическая структура трихотеценов.

Трихотеценовые микотоксины или просто трихотецены (сокр. ТТМТ) — органические соединения из так называемого семейства сесквитерпеноидов, их отличительной чертой служит трихотеценовое кольцо (трихотекан), которое содержит двойную связь С-9 и эпоксидную группу в области С-12,13[28]. В настоящее время идентифицировано более 100 трихотеценов, большинство из них являются слаботоксичными, лишь немногие — смертельно опасны. Трихотеценовые микотоксины — вторичные метаболиты, которые продуцируются в основном микроскопическими  плесневыми грибами (микромицетами) рода Fusarium, а также в меньшей степени Stahybotrys, Trichoderma, Cephalosporium, Trichothecium и  Mizothecium. Биологические контаминанты, являются сильными иммунодепрессантами, поражают органы кроветворения, ЖКТ, повышают риск возникновения геморрагий (кровоизлияний) внутренних органов человека[29].

В зависимости от структуры трихотеценового ядра эти микотоксины подразделяются на 4 группы: А, В, С и D. Структура различных типов трихотеценовых микотоксинов очень сложна и имеет свои характерные особенности.

В качестве природных загрязнителей (контаминантов) пищевых продуктов и кормов к настоящему времени выявлены только четыре: Т-2 токсин и диацетоксискирпенол, относящиеся к типу А, а также ниваленол и дезоксиниваленол (вомитоксин), относящиеся к типу B.

Токсическое воздействие трихотеценов

Охратоксины[править | править код]

Охратоксиныорганические соединения, группа микотоксинов, производные кумарина, продуцируемые некоторыми видами микроскопических плесневых грибов рода Аспергилл и Пеницилл. Основной продуцент охратоксинов среди грибов рода Пеницилл — Penicillium verrucosum, среди аспергиллов — Aspergillus ochraceus и некоторые другие виды аспергиллов, включая A.carbonarius и A.niger. Являются биологическими контаминантами. Источниками охратоксинов служат растительные продукты, в особенности зерновые культуры (пшеница, ячмень, кукуруза итд.). Все охратоксины проявляют сильную нефротоксичность. В крови они быстро связываются с белками. Наиболее распространённым и токсичным является охратоксин А. Охратоксины незначительно различаются между собой (имеют сходную структуру молекул). Так, например, охратоксин В в отличие от типа А не содержит атома хлора; охратоксин С — это этилохратоксин А[30].

Фумонизины[править | править код]

Патулин[править | править код]

Patulin.png

Патулин — особо опасное вещество, обладающее канцерогенными и мутагенными свойствами, производное пирана (4-гидроксифуропиранон), трикетид, вторичный метаболит и микотоксин, продуцируемый некоторыми видами микроскопических плесневых грибов рода Aspergillus, Penicillium и реже Byssochlamys. Широко распространён. Является биологическим контаминантом. Высокотоксичен (при пероральном приёме), поражает органы ЖКТ, обладает канцерогенным и генотоксическим воздействием. Помимо этого он проявляет свойства антибиотика, действуя на некоторые виды микроорганизмов[31].

Основными продуцентами патулина являются микроскопические грибы Penicillium patulum и Penicillium expansu. Но и другие виды этого рода микроскопических грибов, а также Byssochlamys fulva и B. nivea способны синтезировать патулин. Максимальное токсинообразование отмечается при температуре 21–30 °С.

Биологическое действие патулина проявляется как в виде острых токсикозов, так и в виде ярко выраженных канцерогенных и мутагенных эффектов. Биохимические механизмы действия патулина изучены недостаточно. Предполагают, что патулин блокирует синтез ДНК, РНК и белков, причём блокирование инициации транскрипции осуществляется за счет ингибирования ДНК-зависимой-РНК-полимеразы. Кроме этого, микотоксин активно взаимодействует с SH-группами белков и подавляет активность тиоловых ферментов.

Продуценты патулина поражают в основном фрукты и некоторые овощи, вызывая их гниение. Патулин обнаружен в яблоках, грушах, абрикосах, персиках, вишне, винограде, бананах, клубнике, голубике, бруснике, облепихе, айве, томатах. Наиболее часто патулином поражаются яблоки[32], где содержание токсина может доходить до 17,5 мг/кг. Патулин концентрируется в основном в подгнившей части яблока, в отличие от томатов, где он распределяется равномерно по всей ткани.

Патулин в высоких концентрациях обнаруживается и в продуктах переработки фруктов и овощей: соках, компотах, пюре и джемах. Особенно часто его находят в яблочном соке (0,02–0,4 мг/л). Содержание патулина в других видах соков: грушевом, айвовом, виноградном, сливовом, манго — колеблется от 0,005 до 4,5 мг/л. Интересным представляется тот факт, что цитрусовые и некоторые овощные культуры, такие как картофель, лук, редис, редька, баклажаны, цветная капуста, тыква и хрен обладают естественной устойчивостью к заражению грибами-продуцентами патулина.

Токсины грибов[править | править код]

Аматоксины

Hazard TT.svg

Аматоксины, также аманитотоксины — группа органических соединений, представляют собой циклические пептиды (октапептиды), состоящие из восьми аминокислотных остатков. Все токсины аманита содержат γ-гидроксилированные аминокислоты, что является условием их токсичности[33]. Чрезвычайно токсичны, сильнейшие гепатотоксины, поражают клетки печени (гепатоциты), вызывая их некроз, и тем самым представляют большую угрозу здоровью и жизни человека при интоксикации.

Структура аматоксинов. Чёрным цветом обозначен остов структуры, который постоянен для всех видов. Вариабельные (переменные) группы R1 — R5, обозначенные красным цветом, определяют конкретные виды аматоксинов.

Всего известно десять видов аматоксинов, представленных в виде таблицы[34]:

Название R1 R2 R3 R4 R5
α-Аманитин OH OH NH2 OH OH
β-Аманитин OH OH OH OH OH
γ-Аманитин H OH NH2 OH OH
ε-Аманитин H OH OH OH OH
Амануллин H H NH2 OH OH
Амануллиновая кислота H H OH OH OH
Аманинамид OH OH NH2 H OH
Аманин OH OH OH H OH
Проамануллин H H NH2 OH H

Источниками аматоксинов являются некоторые виды грибов рода Аманита (бледная поганка, белая поганка, весенняя поганка и др.), Галерина (галерина окаймлённая и др.) и Лепиота или Чешуйница (лепиота коричнево-красная, лепиота каштановая, лепиота розоватая и др.). Наиболее распространённые и смертельно опасные грибы, содержащие аматоксины:

Все аматоксины — СДЯВ, с ярко выраженным цитотоксическим воздействием. Вызывают деструкции (разрушения) клеток желудка и особенно энтероцитов кишечника. Наиболее чувствительными к воздействию аматоксинов являются клетки печени и почек. Однако воздействие происходит медленно. Минимальная летальная доза колеблется от 0,1 мг (α-аманитин) до 7 мг/кг тела человека.

Фаллотоксины

Фаллотоксины, также фаллоидины — группа органических соединений, представляют собой циклические гептапептиды, состоящие из 7-ми аминокислотных остатков, соединённые мостиками боковых цепей остатков триптофана и цистеина. За исключением указанных остатков все аминокислоты имеют L-конфигурацию[39]. Чрезвычайно токсичные, проявляют гепатотоксическое воздействие, вызывают поражения клеток паренхимы печени (некрозы). Встречаются вместе с аматоксинами в плодовых телах грибов рода Аманита (Мухомор).

Структурная формула фаллотоксинов, вариабельные группы представлены в виде R1-R4.

Известные виды фаллотоксинов представлены в виде таблицы:

Название R1 R2 R3 R4
Фаллацин CH2CH(OH)(CH3)2 CH(CH3)2 CH(OH)COOH OH
Фаллацидин CH2C(OH)(CH3)CH2OH CH(CH3)2 CH(OH)COOH OH
Фаллизацин CH2C(OH)(CH2OH)2 CH(CH3)2 CH(OH)COOH OH
Фаллизин CH2C(OH)(CH2OH)2 CH3 CH(OH)CH3 OH
Фаллоидин CH2C(OH)(CH3)CH2OH CH3 CH(OH)CH3 OH
Фаллоин CH2CH(OH)(CH3)2 CH3 CH(OH)CH3 OH
Профаллоин CH2CH(OH)(CH3)2 CH3 CH(OH)CH3 H

Гиромитрин[править | править код]

Строчок обыкновенный (Gyromitra esculenta) содержит высокотоксичные производные гидразина, включая и гиромитрин, который может привести к летальному исходу[40][41].


Gyromitrin Structural Formulae .V.1.svg

Гиромитрин (N'-этилиден-N-метилформогидразид) — азотсодержащее органическое вещество, производное гидразина, обладает высокой токсичностью и канцерогенностью. Найден в плодовых телах сумчатых грибов рода Строчок (Gyromitra). Гиромитрин нестабилен и легко гидролизуется до чрезвычайно токсичного соединения монометилгидразина. Монометилгидразин (ММН) действует на центральную нервную систему, вызывает гемолиз эритроцитов и нарушает обмен витамина В6. Отравление приводит к тошноте, спазмам желудка и диарее, в то время как тяжёлое отравление может привести к судорогам, желтухе или даже коме или смерти. Было показано, что воздействие монометилгидразина является канцерогенным для мелких млекопитающих. Токсичность гиромитрина сильно варьируется в зависимости от исследуемых видов животных. Средняя летальная доза (LD50) составляет 244 мг/кг для мышей, 50–70 мг/ кг для кроликов и 30–50 мг/кг для людей[42]. Токсичность в значительной степени обусловлена образующихся в результате гидролиза молекул ММН; около 35% проглоченного гиромитрина превращается в MMH. На основании этого преобразования было оценено, что ЛД50 ММН для человека составляет 1,6–4,8 мг/кг (дети) и 4,8–8 мг/кг (взрослые)[42].

Фитотоксины[править | править код]

Алкалоиды[править | править код]

Алкалоиды — весьма обширный класс азотсодержащих органических соединений, оказывающих самое различное действие на организм человека. Это и сильнейшие яды, и полезные лекарственные средства (обладают сильными физиологическими воздействиями)[43].

Гликозиды[править | править код]

Лектины[править | править код]

Пространственная структура рицина. На рисунке отчётливо видны 2 цепи, имеющие разную окраску. Цепь А окрашена в синий цвет, цепь В — золотистым. Рицин является сильнейшим токсином растительного происхождения, имеющий белковую природу. Клиническая картина отравления рицином напоминает бактериальную интоксикацию (пищевую токсикоинфекцию) и характеризуется повышением температуры, диареей, развитием дыхательной и почечно-печеночной недостаточности, вплоть до явлений эндотоксиноподобного шока. В ряде случаев описаны явления гемолиза и развитие геморрагического энтерита. Такое сходство в проявлении симптомов характерно для лектинов. ЛД100 человека составляет менее 10 мг.

Лектины — группа веществ гликопротеидной природы с молекулярной массой от 60 до 120 тысяч дальтон. Они широко распространены в семенах и других частях растений. Лектины обнаружены в бобовых, арахисе, проростках растений, а также в икре рыб.

Лектины обладают способностью: повышать проницаемость стенок кишечника для чужеродных веществ; нарушать всасывание нутриентов; вызывать агглютинацию (склеивание) эритроцитов крови. С этим связано их негативное действие при высоких концентрациях. Некоторые лектины чрезвычайно токсичны, например, лектин из семян клещевины (Ricinus communis) — рицин, а также лектины некоторых животных и микроорганизмов, в частности холерный токсин.

Зоотоксины и токсины морских беспозвоночных[править | править код]

Нейротоксины моллюсков[править | править код]

Отравление нейротоксичными моллюсками связано с употреблением в пищу мидий, устриц, морских гребешков или сердцевидок. Двустворчатые моллюски становятся ядовитыми после питания определёнными динофлагеллятами или цианобактериями. Парализующим токсином моллюска (PSP) является сакситоксин.

Действие сакситоксина проявляется у людей в виде сердечно-сосудистого коллапса и паралича дыхания. Он блокирует распространение нервных импульсов без деполяризации, и нет никакого известного противоядия. Он устойчив к высокой температуре, растворим в воде, не разрушается при варке. Он может быть разрушен кипячением в течение 3–4 ч при pH 3,0.

Признаки синдрома PSP развиваются в течение 2 ч после приема пищи ядовитых моллюсков, они характеризуются парестезией (покалывание, нечувствительность или жжение), которая начинается со рта, губ и языка, которая позднее распространяется по лицу, голове и шее к кончикам пальцев руки ног. Смертность по разным данным колеблется от 1 до 22%.

Химические контаминанты[править | править код]

Hazard T.svg

К химическим или антропогенным контаминантам относят разнообразные химические соединения или их смеси, чужеродного происхождения (являются результатом деятельности человека — ксенобиотиками), обладающие высокой биологической активностью, присутствие которых в пищевых продуктах может серьёзно ухудшить здоровье или даже привести к летальному исходу. Подразделяются на две группы: неорганические и органические (составляют большую часть). Примером таких соединений являются метанол, аммиак, формальдегид, соединения мышьяка, соединения бериллия и тяжёлых металлов (бария, кадмия, сурьмы, меди, свинца, таллия, ртути итд.), поверхностно-активные вещества (моющие средства или детергенты), пестициды (например, хлорорганические: группы альдрина, гексахлоран, ДДТ; паракват; фосфорорганические: фосдрин, ДФФ, тиофос и др.) и минеральные удобрения (основу, которых составляют нитраты), нефтепродукты (топливо, синтетические масла, бензол и его производные, и другие ароматические соединения), органические растворители,  фенолы и их производные (в частности, фенолформальдегидные смолы), эпоксид этилена, пластмассы и полимеры (ПВХ, поливинилиденхлорид итд.), искусственные непищевые красители, лаки и краски, продукты сгорания биомассы, диоксины и диоксинподобные соединения, канцерогены антропогенного происхождения (полициклические ароматические углеводородыбензпирен, бензантрацен, ДМБА, ароматические амины и др.) и многие другие.

Тяжёлые металлы, мышьяк и их соединения[править | править код]

В так называемую группу тяжёлых металлов входят металлы с плотностью более 8 г/см3 и атомной массой более 40 а.е.м.. Однако с точки зрения медицины и экотоксикологии тяжёлыми металлами считаются металлы, которые обладают высокой биологической активностью, в частности, токсичностью и способностью внедрения в пищевые цепи. К таким металлам относятся:

  • Свинец
  • Кадмий
  • Ртуть
  • Таллий
  • Сурьма
  • Барий
  • Медь
  • Хром
  • Цинк и их соединения.

Помимо данных элементов в группу входят: Мышьяк, Бериллий и Алюминий. Два последних элемента по плотности и атомной массе нельзя отнести к тяжёлым металлам, однако, бериллий и особенно его растворимые соединения обладают высокой токсичностью.


Ртуть и её соединения[править | править код]

Из находящихся поблизости источников антропогенного загрязнения, производящих сжигание угля или добычу железной руды, метилртуть, которая хорошо накапливается в рыбе, может попадать в водоёмы. Благодаря процессу биомагнификации уровень ртути в каждом последующем звене трофической (пищевой) цепочки увеличивается. Таким образом, мелкие рыбы концентрируют в себе ртуть и метилртуть. Мелких рыб съедают более крупные рыбы; при этом уровень опасности повышается и крупную рыбу можно есть крайне редко[56].

Ртуть — один из самых опасных и высокотоксичных элементов, обладающий способностью накапливаться в растениях и в организме животных и человека, то есть являющийся ядом кумулятивного действия.

В организм человека ртуть поступает в наибольшей степени с рыбопродуктами, в которых ее содержание может многократно превышать ПДК.

Токсичность ртути зависит от вида ее соединений, которые по-разному всасываются, метаболизируются и выводятся из организма. Наиболее токсичны алкилртутные соединения с короткой углеродной цепью — метилртуть, этилртуть, диметилртуть. Механизм токсического действия ртути связан с ее взаимодействием с сульфгидрильными группами белков (SH-группы). Блокируя их, ртуть изменяет свойства или инактивирует ряд жизненно важных ферментов. Неорганические соединения ртути нарушают обмен аскорбиновой кислоты, пиридоксина, кальция, меди, цинка, селена, а органические — обмен белков, цистеина, аскорбиновой кислоты, токоферолов, железа, меди, марганца, селена. Защитным эффектом при воздействии ртути на организм человека обладают цинк и особенно селен. Предполагают, что защитное действие селена обусловлено деметилированием ртути и образованием нетоксичного соединения — селено-ртутного комплекса. Человек получает с суточным рационом около 0,05 мг ртути, что соответствует рекомендациям ФАО/ВОЗ.

Мясо рыбы отличается наибольшей концентрацией ртути и ее соединений, поскольку активно аккумулирует их из воды и корма, в который входят различные гидробионты, богатые ртутью. Например, хищные пресноводные рыбы могут содержать от 107 до 509 мкг / кг, нехищные пресноводные рыбы — от 78 до 200 мкг / кг, а океанские нехищные рыбы — от 300 до 600 мкг / кг Hg. Организм рыб способен синтезировать метилртуть, которая накапливается в печени. У некоторых видов рыб в мышцах содержится белок — металлотионеин, который с различными металлами, в том числе и с ртутью, образует комплексные соединения, способствуя тем самым накапливанию ртути в организме и передаче ее по пищевым цепям. У таких рыб содержание ртути достигает очень высоких концентраций: рыба-сабля содержит ее от 500 до 20 000 мкг/кг, а тихоокеанский марлин — от 5000 до 14 000 мкг / кг. Для других продуктов характерно следующее содержание ртути (в мкг / кг) — в продуктах животноводства: мясо — 6–20, печень — 20–35, почки — 20–70, молоко — 2–12, сливочное масло — 2–5, яйца — 2–15; в съедобных частях сельскохозяйственных растений: овощи — 3–59, фрукты — 10–124, бобовые — 8–16, зерновые — 10–103; в шляпочных грибах — 6–447, в перезрелых — до 2000 мкг/кг, причём, в отличие от растений, в грибах может синтезироваться метилртуть. При варке рыбы и мяса концентрация ртути в них снижается, при аналогичной обработке грибов — остается неизменной. Это различие объясняется тем, что в грибах ртуть связана с аминогруппами азотсодержащих соединений, в рыбе и мясе — с серосодержащими аминокислотами.

Болезнь Минаматы

Основная статья: Болезнь Минаматы

Наиболее известные примеры массового отравления ртутью были вызваны именно метилртутью CH3Hg+. В 1953 году в Японии у 121 жителя побережья в бухте Минамата было зафиксировано заболевание, сопровождавшееся ломотой в суставах, нарушением слуха и зрения. Это заболевание, вошедшее в литературу под названием «болезнь Минаматы», закончилась смертью для почти трети больных.

В дальнейшем в 1959 году удалось установить, что эта болезнь вызывается употреблением в пищу рыбы, отравленной ртутью в форме хлорида CH3HgCl, сбрасываемого химическим предприятием (Chicco corp.) прямо в воды залива. Концентрация ртути была настолько велика, что рыба погибала; поедавшие эту рыбу птицы падали прямо в море, а отведавшие отравленной пищи кошки передвигались, «кружась и подпрыгивая, зигзагами и коллапсируя». К 1954 году популяция кошек в этих местах заметно снизилась. Однако до 1959 года никаких замеров ртутного загрязнения вод залива в этом районе не проводилось (мониторинг отсутствовал).

Интенсивное расследование позволило установить, что на заводе по производству ацетальдегида и уксусной кислоты из ацетилена (по реакции Кучерова) ртутные отходы сбрасывались в реку, впадающую в бухту Минамата. При этом ртуть, о чем первоначально и не подозревали, микробиологическим путём превращалась в метилртуть, которая через планктон, моллюсков и рыб в конце концов попадала в пищу. В этом цикле ртуть постепенно концентрировалась и в конце пищевой цепи, дойдя до человека, достигала токсической концентрации.

Свинец и его соединения[править | править код]

Кристаллы ацетата свинца II. Ацетат свинца (свинцовый сахар) в Древнем Риме использовался в качестве подсластителя (т.н. дефрутум), так как обладает довольно сладким вкусом. Хроническое отравление свинцом приводит к тяжёлым поражениям нервной и сердечно-сосудистой системы[57].

Свинец — один из самых распространённых и опасных экотоксикантов. История его применения очень древняя, что связано с относительной простотой его получения и большой распространённостью в земной коре (1,6 *10–3 %). Соединения свинца — Pb3O4 и PbSO4 — основа широко применяемых пигментов: сурика и свинцовых белил. Глазури, которые используются для покрытия керамической посуды, также содержат соединения Pb. Металлический свинец со времен Древнего Рима применяют при прокладке водопроводов. В настоящее время перечень областей его применения очень широк: производство аккумуляторов, электрических кабелей, химическое машиностроение, атомная промышленность, производство эмалей, замазок, лаков, хрусталя, пиротехнических изделий, спичек, пластмасс и т. п. Мировое производство свинца составляет более 11,2 млн. тонн в год. В результате производственной деятельности человека в природные воды ежегодно попадает более 1 млн. тонн, а в атмосферу в переработанном и мелкодисперсном состоянии выбрасывается около 700 тыс. тонн, подавляющее большинство которого оседает на поверхности Земли.

Токсичность свинца[править | править код]

Eight MRI views of a brain in black and white, with yellow, orange, and red areas overlaid in spots mainly toward the front.
Головной мозг взрослых, которые подвергались воздействию свинца в детском возрасте, показано снижение объёма, особенно в префронтальной коре, снимки сделаны с помощью МРТ. Области потери объёма показаны цветом над шаблоном нормального мозга[58].

Механизм токсического действия свинца имеет двойную направленность. Во-первых, блокада функциональных SH-групп белков и, как следствие, инактивация ферментов, во-вторых, проникновение свинца в нервные и мышечные клетки, образование лактата свинца, затем фосфата свинца, которые создают клеточный барьер для проникновения ионов Са2+.

Свинцовая интоксикация может приводить к серьёзным нарушениям здоровья, проявляющимся в частых головных болях, головокружениях, повышенной утомляемости, раздражительности, ухудшении сна, мышечной гипотонии, а в наиболее тяжёлых случаях к параличам и парезам, умственной отсталости. Неполноценное питание, дефицит в рационе кальция, фосфора, железа, пектинов, белков (или повышенное поступление кальциферола) увеличивают усвоение свинца, а следовательно, его токсичность.

Свинец в пищевых продуктах

Свинец обнаруживается в питьевой воде и некоторых пищевых продуктах.

Ежедневное поступление свинца в организм человека колеблется от 70 до 400 мкг. Основной источник поступления соединений свинца в организм — пища, преимущественно растительная. Поступление свинца в организм человека с питьевой водой составляет лишь несколько процентов от того количества свинца, которое вводится с пищей и воздухом. Основной источник свинца в воде — сплавы, используемые при соединении водопроводных труб. Имеются доказательства того, что содержание свинца в хлорированной водопроводной воде больше, чем в нехлорированной.

Отравления свинцом иногда носит массовый характер, например, в 2019 году в Бангладеш соединения свинца были добавлены в куркуму, чтобы сделать её более жёлтой[59]. Считается, что это началось в 1980-х и продолжается до сих пор.

Кадмий и его соединения[править | править код]

Токсичность алюминия[править | править код]

Мышьяк и его соединения как котаминанты пищевых продуктов[править | править код]

Мышьяк как элемент в чистом виде ядовит только в высоких концентрациях. Он принадлежит к тем микроэлементам, необходимость которых для жизнедеятельности организма человека не доказана, а его соединения, такие как мышьяковистый ангидрид, арсениты и арсенаты, сильно токсичны. Мышьяк содержится во всех объектах биосферы (в земной коре — 2 мг/кг, морской воде — 5 мкг/кг). Известными источниками загрязнения окружающей среды мышьяком являются электростанции, использующие бурый уголь, медеплавильные заводы; он используется при производстве полупроводников, стекла, красителей, инсектицидов, фунгицидов и др. Нормальный уровень содержания мышьяка в продуктах питания не должен превышать 1 мг /кг. Так, например, фоновое содержание мышьяка (в мг/кг): в овощах и фруктах — 0,01–0,2; в зерновых — 0,006–1,2; в говядине — 0,005–0,05; в печени — 2,0; яйцах — 0,003–0,03; в коровьем молоке — 0,005–0,01. Повышенное содержание мышьяка отмечается в рыбе и других гидробионтах, в частности в ракообразных и моллюсках. По данным ФАО/ВОЗ, в организм человека с суточным рационом поступает в среднем 0,05–0,45 мг мышьяка. ДСД — 0,05 мг/кг массы тела.

В зависимости от дозы мышьяк может вызывать острое и хроническое отравление; разовая доза мышьяка 30 мг — смертельна для человека. Механизм токсического действия мышьяка связан с блокированием SH-групп белков и ферментов, выполняющих в организме разнообразные функции.

Пестициды в пищевых продуктах[править | править код]

Бензол и его производные как контаминанты[править | править код]

Бензол будучи одним из наиболее синтезируемых органических соединений (более 60 млн. тонн в год (2019)), при этом является и высокоопасным для здоровья человека веществом. Токсичность бензола долгое время была недооценённой. Бензол обладает политропным воздействием, с преимущественно миелотоксичным и мутагенным эффектами. Хроническое воздействие бензолом может увеличить риск возникновения злокачественных новообразований системы крови, клеток паренхимы печени и лимфоидной ткани. Наиболее чувствительны к бензолу клетки активно делящихся тканей — миелоидной и лимфоидной, так как он обладает радиомиметичностью (сходством с ионизирующим излучением). ЛД100 для человека составляет около 55-70 мл, минимальные летальные дозы могут быть намного меньше 15-17 мл. Бензол в организме человека подвергается биотрансформации в печени, где и происходит образование высокореакционных продуктов.

Трансформация бензола в клетках печени и миелоидной ткани[править | править код]

Биотрансформация бензола, механизм I. Цифрами обозначены: 1 бензол, 2 бензолоксид, 3 эпоксибензол, 4 фенол, 5 пирокатехин, 6 гидрохинон.

Попав в клетки печени (гепатоциты) или миелоидной ткани бензол претерпевает биотрансформацию, происходящую при участии фермента цитохрома P450, которая приводит к образованию высоко реакционноспособных соединений (эпоксид и оксид бензола) и генерирует свободные радикалы, вследствие активации цитохрома P450 (образуются в первую очередь активные формы кислорода). Конечным продуктом биотрансформации бензола является фенол. Реакция протекает по уравнению:

Цит Р450 + NADPH + H- + O2 → Цит Р450 + NADP+ + HOOH.

HOOH → 2ОH·

C6H6 + 2ОH· → C6H5OH + Н2О.

Образовавшиеся активные формы кислорода способны повреждать клетки миелоидной ткани, которые очень чувствительны к такому роду воздействию (оксидативный стресс). Это приводит к дегенерации и деструкции миелоидной ткани, которые имеют очень серьёзные последствия (миелодисплазии, апластическая анемия и лейкозы)[60]. Повреждения миелоидной ткани ведёт к дисфункциям, сопряжённой с ней иммунной системы.

Таким образом бензол проявляет радиомиметический эффект (эффект сходный с воздействием ионизирующего излучения).

Эпоксид и оксид бензола имеют высокое угловое напряжение связей –С–О–С– и легко превращаются в электрофильные молекулы, посредством разрыва данных связей. Образованные электрофильные молекулы легко образуют прочные ковалентные связи с нуклеофильными центрами аминогрупп в молекулах нуклеиновых кислот (реакция нуклеофильного замещения SN2), в частности, с нуклеотидами ДНК, образовавшиеся продукты носят названия ДНК-аддуктов (например, N7-фенилгуанин). ДНК-аддукты изменяют структуру нативной молекулы ДНК, таким образом, что происходит невозможность протекания нормальных процессов удвоения (репликации) и транскрипции. Это в свою очередь приводит к повреждениям участков ДНК (генотоксичность), образованию мутантных белков, торможению апоптоза, подавлению экспрессии некоторых белков-антионкогенов (вплоть до утраты) и в конечном итоге возможна трансформация клеток (малигнизация) или смерть (некроз). Таким образом, продукты окисления бензола проявляют мутагенные и канцерогенные свойства. К тому же оксид является довольно токсичным веществом.

Бензолоксид проявляет высокую реакционную способностью и токсичность.

Накопление продуктов окисления бензола, крайне негативно сказывается на целостности клеток. Активные формы кислорода могут начать процесс перекисного окисления липидов и перегрузить антиоксидантную систему. Помимо этого в больших концентрациях бензол может разрушать биомембраны клеток, посредством солюбилизации и растворения липидного бислоя. Хроническое воздействие продуктов окисления бензола увеличивают риск возникновения злокачественных опухолей системы крови и паренхимы печени.

Бензол в пищевых продуктах[править | править код]

Впервые большие дозы бензола были обнаружены в газированных напитках еще в 1990 г. в США (Perrier).

Фенолы[править | править код]

Фенолы отличаются от спиртов значительно более сильными кислотными свойствами. В водных растворах едких щелочей образуют соли — феноляты, которые гидролизуются водой и разлагаются кислотами, образуя свободные фенолы. На воздухе фенолы постепенно окисляются. Фенолы отличаются значительным разнообразием — от практически нетоксичных до весьма токсичных. Часть одноатомных фенолов — сильные нейротоксины, поражают печень, почки, проникают через кожу; однако высшие члены ряда в производственных условиях мало опасны. Многоатомные фенолы при длительном поступлении в организм нарушают ферментативные процессы.

Токсичность фенолов зависит от строения, положения и количества радикалов, от растворимости в воде и жирах. В порядке повышения токсичности они располагаются следующим образом: пирогаллол—резорцин—фенол—крезолы—ксиленолы—нитрофенолы—нафтолы—гидрохинон—хлорфенолы.

Фенолы способны накапливаться в рыбах и передаваться по трофической цепи. В наибольшем количестве они обнаруживаются в печени, а затем (в порядке уменьшения) в жабрах, почках, селезёнке, мышцах и кишечнике. При остром отравлении карпов и форели (10 мг/л) содержание фенолов составляло в печени 119 мг/кг, в жабрах 17,7, внутренних органах 7,9; при хроническом отравлении (0,02–0,07 мг/л) – 2,0–3,0 мг/кг. В реках, не загрязненных фенолом, в теле плотвы его содержание составляло 0,3 мг/кг.

Обратимость фенольной интоксикации высокая, так как соединения фенола распадаются или выводятся из организма в течение 1–2 сут., а некоторые соединения сохраняются несколько недель. Рыба приобретает фенольный запах и вкус при содержании в воде смеси фенола и крезолов 0,02–0,03 мг/л, хлорфенолов 0,015–0,001 мг/л, а также после поедания загрязнённых кормовых объектов (тубифацид, хирономид).

Нитробензол[править | править код]

Анилин[править | править код]

Диоксины в пищевых продуктах[править | править код]

Структурные формулы некоторых диоксинов.

Диоксины представляют собой бифункциональные органические высокотоксичные соединения (некоторые, как, например, ТХДД — чрезвычайно токсичные), обладающие мутагенными, канцерогенными, иммунодепрессивными, эмбриотоксическими и тератогенными свойствами. Они представляют реальную угрозу загрязнения пищевых продуктов, включая воду.

Радиоактивные контаминанты[править | править код]

Radioactive.svg

Радиоактивные контаминанты представляют собой особую группу, которая включает природные радиоактивные элементы (уран, торий, радий, полоний, протактиний и многие другие) и их соединения, а также радионуклиды антропогенного происхождения, таких, как например, короткоживущий изотоп 131I (Т1/2 = 8 суток), и более продолжительно живущие 90Sr (Т1/2 ~ 29,15 лет), 137Cs (Т1/2 ~ 30,2 лет).

Основные негативные биологические эффекты радиоактивных контаминантов проявляются в высокой ионизации пищевых продуктов, так как большинство живых клеток высокочувствительны к ней (в особенности это клетки активно делящихся тканей — миелодной, лимфоидной, слизистых оболочек и половых желёз). Радиоактивные соединения, попадают внутрь организма вместе с контаминированными продуктами, где в результате ионизации и избыточного образования токсичных перекисных соединений, возникают цепные реакции сильно перегружающие антиоксидантную систему, что приводит к негативным последствиям, например, к таким, как серьёзные поражения органов ЖКТ (особенно печени, т.к. в ней происходят процессы депонирования и обезвреживание образовавших токсичных продуктов). Вместе с тем происходят процессы снижения или подавления репродуктивной функции (гипоспермия, азоспермия, бесплодие и др.), мутагенез и тератогенез, снижение функций эндокринной системы (например, в щитовидной железе селективно депонируется радиоизотоп йод-131), накопление в мышцах, костных тканях и дальнейшее усиление дегенерации миелоидной ткани, как следствие — лучевая болезнь, лейкозы и другие злокачественные новообразования системы гемопоэза (кроветворения), соединительных тканей (кости, хрящи, суставы итд.), а также сердечно-сосудистой, эндокринной и половой систем. Особенно опасен в этом отношении остеотропный стронций-90, который легко замещает кальций в костях, тем самым повышается риск возникновения их ломкости (остеомаляция, остеопороз), а также приводит к возникновению радиогенной остеосаркомы (вследствие высокой активности). Бóльшую опасность представляет хроническое (долговременное) воздействие радиоактивных контаминантов.

В последние десятилетия уровень радионуклидов в атмосфере непрерывно повышается, это связано прежде всего с увеличением производства ядерного топлива и возникновением катастроф на АЭС (прежде всего это Чернобыльская катастрофа 1986 года и катастрофа 2011 года японской атомной станции Фукусима-1).

Контаминация пищевых продуктов[править | править код]

Контаминация пищевых продуктов — процесс загрязнения контаминантами, приводящий к нецелесообразности употребления, порчи и изменениям органолептических свойств продуктов (изменение вкуса, внешнего вида, консистенции, запаха, цвета и, как следствие снижение пищевой ценности) и повышения опасности для здоровья и жизни, в случае алиментарного применения данных продуктов.

Существует большое количество путей поступления контаминантов из внешней среды в сырьё и пищевые продукты. Основные из них:

  • Почвенный, таким путём в растительное сырьё и сельскохозяйственные продукты проникают нитраты, тяжёлые металлы и их соединения, хлорорганические пестициды, диоксины, радионуклиды.
  • Водный, примером служат наличие вируса гепатита в питьевой воде или пресноводные и морские виды рыб, а также морепродукты (крабы, моллюски и др.) которые способные накапливать тяжёлые металлы, пестициды, нефтепродукты, ПАВ, ртутьорганические соединения, и многие другие контаминанты
  • Воздушный, характерен для процессов возделывания сельскохозяйственных культур, которые могут поглощать из воздуха многие токсичные вещества — диоксины, нитрозные газы, аммиак, формальдегид и многие другие.

Помимо указанных путей, контаминанты могут проникать в пищевые продукты и во время технологической обработки. Следовательно, контаминация может происходить практически на всех этапах производства, хранения и транспортировки (реализации) пищевых продуктов.

Также возможна преднамерная и диверсионная контаминация, направленные на устранение нежелательных физических лиц (путём отравления пищевых продуктов биологическими агентами, радионуклидами или боевыми отравляющими веществами, например, отравление Литвиненко полонием-210, отравление Ющенко диоксинами) и нанесение серьёзного урона продовольственной безопасности государству (используются также различные биологические, химические или радиоактивные контаминанты).

Действия контаминантов на организм человека[править | править код]

Ангиоэдема, также ангионевротический отёк или отёк Квинке у ребёнка, одна из аллергических реакций на содержащиеся в пищевых продуктах специфические антигены — аллергены[61].
Хронический афлатоксикоз (хроническая интоксикация афлатоксинами) почти в 100% случаев вызывает цирроз печени и гепатоцеллюлярную карциному. На снимке макропрепарат печени человека, с тотальным циррозом и локализованной карциномой печени.
Наглядный пример тератогенного воздействия 2,3,7,8-ТХДД. На снимке группа вьетнамских детей-инвалидов, в большей части пострадавших от агента Оранж.
Типичная картина ботулизма у 14-летнего ребёнка. Отчётливо виден двусторонний офтальмоплегический паралич (офтальмоплегия) и птоз верхних век. Сознание сохранённое.
Виктор Ющенко через 1,5 месяца после отравления 2,3,7,8-ТХДД. Отчётливо видны папулы, следы от пустул и поражение кожи лица — хлоракне.

На организм человека, действия оказываемые контаминантами, подразделяются на:

Количественной характеристикой токсического воздействия контаминантов является ЛД50. По токсическому воздействию (значения ЛД50 даны в мг/кг) контаминанты делятся на:

  • Низкотоксичные (слаботоксичные) (>1500)
  • Умеренно-токсичные (1500-150)
  • Высокотоксичные (150-15)
  • Чрезвычайно токсичные (<15).

Большую опасность представляют высокотоксичные и чрезвычайно токсичные контаминанты, которые могут оказывать негативные воздействия в крайне низких концентрациях (10-2—10-6 кг и менее на кг веса).

Патофизиологические эффекты, оказываемые контаминантами[править | править код]

Наиболее частые патофизиологические эффекты, оказываемые контаминантами:

  • Токсичность — свойство негативно влиять на физиологические и биохимические процессы, протекающих в нормальных клетках, результатом которого является обратимые или необратимые изменения, нарушения или даже ингибирование (подавление) данных процессов, и как следствие смерть клеток и организма в целом. Многие, если не большинство контаминантов обладают токсичностью. Токсичность зависит от целого ряда физиологических и токсико-химических факторов, главные из которых, возраст, пол, количество токсичных веществ поступивших в организм, период действия, период выведения, тропность, комплексообразование, способность к гидролизу, биоаккумуляция, тканевая или органная специфичность и другие.
  • Альтеративный воспалительный процесс — нарушения целостности структуры клеток т.е их повреждения, возникающие в результате воздействия биологических агентов и/или химических соединений (включая радиоактивные) и, последующие за ними некролитический путь смерти, деструктивных клеток. Многие контаминанты обладают альтеративным эффектом.
  • Канцерогенное воздействие или канцерогенность — свойство химических и радиоактивных соединений или их смесей, а также биологических агентов, включая вирусы вызывать злокачественные заболевания организма человека. К этой группе относятся ПАУ, которые образуются в результате термической обработки (при жарке) мяса и продуктов из неё (копчённости), нитрозамины[70](образуются из нитратов и нитритов), ароматические амины, диоксины и диоксибензофураны (в частности 2,3,7,8-ТХДД), соединения мышьяка, кадмия и шестивалентного хрома, афлатоксины, бензол, стронций-90.
  • Мутагенное воздействие или мутагенность — свойство негативного воздействия химических соединений, физических факторов или биологических агентов на генетический аппарат клеток, следствием которого являются мутации. Генотоксичность — предельная форма мутагенности, при которой происходят нарушения целостности структуры молекул ДНК (вследствие встраивания ксенобиотических молекул в молекулу ДНК — ковалентного или интеркаляции), вплоть до утраты генов или деструкции (разрушения). Часто мутагены могут быть канцерогенами и/или тератогенами. Многие диоксины, и в особенности ТХДД являются сильными мутагенами, такими же свойствами обладают многие ароматические углеводороды и их производные (бензол, ДМБА, метилхолантрен) и органические перекисные соединения.
  • Иммуносупрессия или иммунодепрессивный эффект выражается в частичном (вторичные иммунодефицитные состояния или ВИДС) или полном подавлении функций иммунной системы[71][72] (например, иммунодефицитный микотоксикоз). Данным эффектом обладают многие микотоксины, некоторые виды вирусов.
  • Тератогенное воздействие — негативный эффект воздействия тератогенов на генетический аппарат плода, результатом, которого являются мутации и аномальные морфологические изменения тела (врожденные уродства). Диоксины обладают высоким тератогенным и эмбриотоксичным воздействием, также этим воздействием обладают охратоксины, многие канцерогены, например, метилхолантрен.
  • Аллергическое воздействие — происходит при действии специфических антигенов, вызывающих аллергическую реакцию. Некоторые аллергические реакции могут быть очень быстрыми и опасными для жизни, как, например, анафилаксия. Примером могут служить антигены некоторых видов двустворчатых моллюсков (мидии, устрицы и др.), морских рыб, молока, арахиса, употребляемых в пищу.
  • Гепатотоксичность — негативный эффект воздействия некоторых биологических агентов, физических факторов и химических соединений на клетки паренхимы печени — гепатоциты. Выражается в дегенерации и некролитическом процессе гибели клеток паренхимы печени, как следствие гепатиты и цирроз. Гепатотоксичностью обладает некоторые микотоксины (афлатоксины, Т-2 токсин, патулин), токсины бледной поганки, этанол, вирусы гепатита.
  • Нейротоксичность — свойство химических соединений негативно влиять (вплоть до летального исхода) на процессы и функции клеток (нейроны) нервной системы. Одними из следствий такого влияния являются парезы и параличи. Например, метанол обладает нейродегенеративным воздействием на зрительный нерв и необратимо поражает его, также этим воздействием обладают пестициды (группы альдрина, фосфорорганические соединения), некоторые токсины бактерий (ботулотоксин) и беспозвоночных (тетродотоксин, октопотоксины, сакситоксин итд.), ртутьорганические соединения.
  • Нефротоксичность — негативный эффект воздействия химических соединений или биологических агентов на клетки почки (нефроны), следствием которого являются повреждения нефронов и/или их смерть. Охратоксины, тяжёлые металлы, соединения мышьяка (арсин и др.), аматоксины проявляют нефротоксические свойства.
  • Гематотоксичность — негативный эффект от воздействия различных химических соединений (включая радиоактивные) и/или биологических агентов (включая их продукты метаболизма) на функции клеток крови, их качественные характеристики и состав. Например, нитраты и особенно нитриты, а также органические нитросоединения (нитробензол) обладают гематотоксичностью, вызывают резкое падение уровня гемоглобина (метгемоглобинемия) в эритроцитах, переводя его в неактивную для переноса кислорода форму, бензол вызывает лейкопении и гемолитическую анемию, такими же свойствами обладает и анилин, но действует гораздо медленнее. Миелотоксичность является частным случаем гематотоксичности и выражается в негативном эффекте воздействия химических соединений, радионуклидов или биологических агентов на клетки миелоидной ткани красного костного мозга, повреждая их вплоть до полной деструкции (разрушения структур) или трансформации в опухолевые.
  • Антибиотическое действие — негативный эффект воздействия на микрофлору кишечника биологически активных соединений, следствием которого является снижение числа бактерий кишечника вплоть до полной стерилизации. Многие антибиотики обладают низкой селективностью, и могут существенно влиять на количество бактериальной микрофлоры, данное свойство крайне негативно сказывается на функционировании ЖКТ (дисбактериоз, диарея, нарушения электролитного баланса, итд.). Помимо антибиотиков, данным эффектов обладают сульфаниламидные препараты, препараты нитрофурана и другие.
  • Цитотоксичность — свойство химических соединений, физических факторов и/или биологических агентов негативно воздействовать на определённые виды клеток (например на клетки энтероцитов), вызывая их повреждения или смерть. Таким свойством обладают токсины Коли и токсины бледной поганки.
  • Политропия или политропное воздействие, также эффект комбинированного воздействия — негативный эффект воздействия токсичных соединений или биологических агентов на многие органы, систему органов или на весь организм. Включает в себя совокупность разнообразных патофизиологических процессов и поэтому является наиболее опасным для здоровья или жизни человека. Таким свойством обладают некоторые радиоактивные элементы, диоксины, тяжёлые металлы и их соединения (ртуть, свинец, таллий, радий, полоний итд.), некоторые радионуклиды.

Причины контаминации пищевых продуктов[править | править код]

Основные причины, из-за которых возникает контаминация пищевых продуктов это не соблюдение или нарушения, а также отсутствие систем менеджмента безопасности и стандартов качества пищевых продуктов (HACCP, ISO 22000:2005 итд.), ГОСТов, санитарно-гигиенических норм и правил (СанПиН) или иных нормативно-правовых актов, установленных и контролируемых действующим законодательством государства, происходящих при обработке сырья или производстве пищевых продуктов.

Наглядный пример загрязнения реки продуктами жизнедеятельности, Найроби, Кения

Гигиенический аспект контаминации пищевых продуктов непосредственно сопряжён с экономическим. Обеспечение большинства населения стран Африки, Латинской Америки, некоторых стран Азии (Индия, Бангладеш, Индонезия итд.) чистой питьевой водой и продовольственными продуктами является одной из самых сложных проблем. Во многих регионах Африки и Азии, нерациональное использование водных ресурсов (загрязнение воды продуктами жизнедеятельности и/или нефтепродуктами, сложность процесса очистки или вовсе её отсутствие), частое применение пестицидов в сельском хозяйстве, отражается на качестве продуктов питания (низкая пищевая ценность, большое количество контаминантов, как следствие частые интоксикации и высокий уровень смертности), происходят частые инфекционные заболевания (холера, амёбиаз, тиф, кишечные токсоинфекции, итд.), наблюдается низкая осведомлённость населения об использовании чистой питьевой воды (в некоторых регионах Африки она отсутствует) и использовании воды в процессах кулинарной обработки (вода обычно неочищенная (не проходит процессы очистки) и практически не пригодна для употребления, так как содержит большое количество контаминантов различного происхождения).

Экономический аспект также играет важную роль в обеспечении безопасности пищевой продукции и сырья. Наглядный пример демонстрирует корреляция между уровнем потребления контаминированных продуктов афлатоксинами (арахис, зерновые итд.) и заболеваемостью афлатоксикозом, в некоторых странах Африки (где у населения почти в 100% случаев выявляются циррозное поражение печени и/или рак печени) и западной Европы (единичные случаи)[73]. Данная корреляция показывает на сколько может быть различными уровни продовольственной безопасности и медицины в государствах.

Проблема контаминации пищевых продуктов по мнению Всемирной организации продовольствия (ФАО) является одной из главнейших проблем человечества.

Безопасность пищевых продуктов[править | править код]

Под безопасностью пищевых продуктов понимается отсутствие опасности для здоровья и жизни человека при употреблении их, как с точки зрения опасности острого патофизиологического воздействия (пищевые интоксикации или токсоинфекции), так и с точки зрения опасности последствий отдалённого, хронического или долговременного воздействия (канцерогенность, мутагенное воздействие, иммунодепрессивный эффект миелотоксичность итд.).

Пищевые продукты и сырьё являются источниками контаминантов, что влечёт за собой множественные риски для здоровья или жизни потребителя, вследствие этого необходимо проводить комплекс мер по обеспечению безопасности данной категории продуктов, к которым относят деконтаминацию. Деконтаминация как технологический процесс, направлена на удаление или полную инактивацию контаминантов в пищевых продуктах или сырье, осуществляемую при помощи механических, физических, химических и/или комбинированных (смешанных) методов.

Механические методы деконтаминации[править | править код]

Механические методы деконтаминации наиболее простые и доступные, представляют собой использование механических процессов очистки, таких, как фильтрование или баромембранные процессы. Фильтрование позволяет очистить пищевые продукты от твёрдых частиц химических контаминантов. Баромембранные процессы служат для более глубокой очистки продукта, посредством обратного осмоса и ультрафильтрации.

Физические методы деконтаминации[править | править код]

Физические методы деконтаминации — использование теплового и волнового излучения. Тепловые или термические методы основываются на нагревании пищевых продуктов до определённой температуры, как правило кратковременно в специальных устройствах — пастеризаторах, стерилизаторах или автоклавах, при этом, процесс нагрева происходит с увеличением давления. Также к этому методу относят криоконсервацию, в результате которой происходит глубокая заморозка пищевых продуктов (производится жидким азотом).

Волновые методы основываются на применении электромагнитного излучения с высокой энергией, как правило, такие виды излучения имеют короткие длины волн, к ним относятся: УФ-лучи, рентгеновское или гамма-излучение. Большинство биологических агентов (бактерии, простейшие, микроскопические грибы) очень чувствительны к подобному роду воздействиям (УФ-лучи), что делает волновые процессы эффективными. Однако применение в процессе деконтаминации пищевых продуктов рентгеновского или более агрессивного гамма-излучения во многих странах запрещено. Нежелательные изменения, которые происходят в некоторых облученных продуктах, могут быть вызваны непосредственно облучением или косвенно в результате пострадиационных реакций. Вода подвергается радиолизу при облучении следующим образом:

2О → Н• + ОН• + Н2О2 + Н2.

Кроме того, свободные радикалы, образованные на всём протяжении пути первичного электрона, реагируют друг с другом, как в случае диффузии. Некоторые из продуктов, образованные вдоль линии прохождения электрона, могут реагировать со свободными молекулами. Облучение в анаэробных условиях несколько снижает образование неприятных запахов и привкусов из-за нехватки кислорода, участвующего в образовании пероксидов. Один из лучших способов минимизировать образование нежелательных ароматов — облучение при температурах подмораживания. Действие температур подмораживания должно уменьшить или остановить радиолиз иобразование сопутствующих ему реагентов. Другие способы снижения побочных эффектов в продуктах представлены в таблице 1.

Кроме воды белки и другие азотсодержащие компоненты — самые чувствительные к действию облучения в продуктах. Продукты облучения аминокислот, пептидов и белков зависят от дозы радиации, температуры, количества кислорода, количества влаги и других факторов.

Таблица 1.Методы, снижающие побочные эффекты в продуктах, обработанных ионизирующим излучением.
Метод   Аргументация
Снижение температуры  Связывание свободных радикалов
Снижение давления кислорода Сокращение числа окислительных свободных радикалов, активизирующих молекулы
Добавление поглотителей  свободных радикалов Конкуренция поглотителей за свободные радикалы
Дистилляция   Удаление летучих предшественников неприятных аромата и вкуса
Сокращение дозы  Очевидно[74]

Химические методы деконтаминации[править | править код]

Поваренная соль или хлорид натрия является одним из самых распространённых и наиболее используемых в пищевой промышленности и в быту консервантов.

Химические методы деконтаминации — применение химических соединений, предотвращающих контаминацию пищевых продуктов биологическими агентами (условно-патогенные, патогенные бактерии, микроскопические плесневые грибы, биологически-активные продукты их метаболизма итд.). К таким соединениям относятся широко используемые консерванты, как, например, некоторые органические кислоты (уксусная, пропионовая, бензойная[75], сорбиновая итд.) и/или их соли (бензоат натрия, сорбат калия[76] итд.), а также поваренная соль (хлорид натрия), этиловый спирт, мёд или сахар (в высоких концентрациях 65-80%). Консерванты создают неблагоприятную среду, подавляя рост, развитие и размножение биологических агентов (обладают бактериостатическим и фунгистатическим действиями)[77].

Таблица 1.Эффективность некоторых консервантов по отношению к микроорганизмам .
Консервант Бактерии Дрожжи Плесневые микромицеты
Нитриты ++ - -
Неорганические сульфиты ++ ++ +
Муравьиная кислота + ++ ++
Пропионовая кислота + ++ ++
Сорбиновая кислота ++ +++ +++
Бензойная кислота ++ +++ +++
Гидроксибензоаты ++ +++ +++
Дифенил - ++ ++
Примечание: — неэффективен; + малая эффективность; ++ средняя эффективность;

+++ высокая эффективность[78].

Использование агрессивных химических соединений, таких, как аммиак, формальдегид, гипохлорит натрия. Формальдегидом обрабатывают зёрна злаковых культур, используют в качестве фунгицида, однако, его наличие даже остаточного количества в зёрнах не допустимо. Гипохлорит натрия NaOCl, ввиду своих сильных окислительных свойств в нейтральной среде (молекула неустойчивая и выделяет сильнейший окислитель и биоцидное соединение — синглетный кислород[79]), также применяют в качестве деконтаминанта зерна, защищая его от опасных микромицетов (рода аспергилл, пеницилл, фузариум и т. д.). При этом гипохлорит натрия отлично инактивирует множественные токсины — ботулинистический, токсины морских животных, микотоксины и др[80].

Комбинированные методы деконтаминации[править | править код]

Комбинированные или смешанные методы деконтаминации представляют собой одновременное применение нескольких методов, например, физических совместно с химическими, тем самым повышая эффективность процесса.

Обеспечение качества и безопасности пищевых продуктов[править | править код]

Обеспечение качества и безопасности пищевых продуктов является основной целью сохранения полноценного здоровья человека. Представляет собой комплекс мер, направленных на соответствие пищевых продуктов международным стандартам сертификации, включая этапы производства, транспортировки и хранения. Одним из таких стандартов является система ХАССП, внедрение которой на пищевом производстве позволяет максимально снизить все угрозы и риски, возникающие непосредственно во время процесса производства, повысить качество продукта и сохранить пищевую ценность[81].

Примечания[править | править код]

  1. Yong Zhang, Cao Chen, Shuangli Zhu, Chang Shu, Dongyan Wang. Isolation of 2019-nCoV from a Stool Specimen of a Laboratory-Confirmed Case of the Coronavirus Disease 2019 (COVID-19) (англ.) // China CDC Weekly. — 2020-02-01. — Vol. 2, iss. 8. — P. 123—124. — ISSN 2096-7071.
  2. Светлана Евгеньевна Траубенберг, А.А. Кочеткова; Нечаев, Алексей Петрович. Пищевая химия. — 2-е. — Санкт-Петербург: ГИОРД, 2003. — С. 524. — 640 с. — 3000 экз. — ISBN 5-901065-38-0.
  3. Preface: Food—A necessity and a threat // Microbial Food Contamination / Wilson, C.L.. — CRC Press, 2008. — С. xi–xvi. — ISBN 9781420008470.
  4. Bohrer, D. Preface // Sources of Contamination in Medicinal Products and Medical Devices (англ.). — John Wiley & Sons, 2012. — ISBN 9781118449059.
  5. Rose, M. Environmental Contaminants // Encyclopedia of Meat Sciences / Dikeman, M.; Devine, C.. — 2nd. — Elsevier, 2014. — Т. 1. — С. 497—501. — ISBN 9780123847348.
  6. Midcalf, B. Pharmaceutical Isolators: A Guide to Their Application, Design and Control (англ.). — Pharmaceutical Press (англ.), 2004. — P. 88—89. — ISBN 9780853695738.
  7. Роева Н.Н. Безопасность продовольственных продуктов. — М.: МГУТУ, 2009.
  8. Type I host resistance and Trichothecene Accumulation in Fusarium-infected Wheat Heads // American Journal of Agricultural and Biological Sciences. — 2011. — 1 февраля (т. 6, № 2). — С. 231—241. — ISSN 1557-4989. — doi:10.3844/ajabssp.2011.231.241. [исправить]
  9. Beyer M., Klix M. B., Klink H., Verreet J.-A. Quantifying the effects of previous crop, tillage, cultivar and triazole fungicides on the deoxynivalenol content of wheat grain — a review // Journal of Plant Diseases and Protection. — 2006. — Декабрь (т. 113, № 6). — С. 241—246. — ISSN 1861-3829. — doi:10.1007/BF03356188. [исправить]
  10. Ilic Z., Crawford D., Vakharia D., Egner P. A., Sell S. Glutathione-S-transferase A3 knockout mice are sensitive to acute cytotoxic and genotoxic effects of aflatoxin B1. (англ.) // Toxicology and applied pharmacology. — 2010. — Vol. 242, no. 3. — P. 241—246. — doi:10.1016/j.taap.2009.10.008. — PMID 19850059. [исправить]
  11. Соланин // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
  12. Food Poisoning from Marine Toxins - Chapter 2 - 2018 Yellow Book (неопр.). CDC (2017). Дата обращения 1 июня 2018.Шаблон:PD-notice
  13. Association of acute toxic encephalopathy with litchi consumption in an outbreak in Muzaffarpur, India, 2014: a case-control study. The Lancet.
  14. Нельсон Д., Кокс М. Основы биохимии Ленинджера. — М.: БИНОМ, 2011. — Т. II.
  15. Страйер Л. Биохимия. — М.: Мир, 1985. — Т. 3. — С. З24. — 400 с.
  16. Huot, R. I.; Armstrong, D. L.; Chanh, T. C. Protection against nerve toxicity by monoclonal antibodies to the sodium channel blocker tetrodotoxin (англ.) // Journal of Clinical Investigation (англ.) : journal. — 1989. — June (vol. 83, no. 6). — P. 1821–1826. — doi:10.1172/JCI114087. — PMID 2542373.
  17. M. Cochet-Meillhac; Chambon P. Animal DNA-dependent RNA polymerases. 11. Mechanism of the inhibition of RNA polymerases B by amatoxins (англ.) // Biochim Biophys Acta (англ.) : journal. — 1974. — Vol. 353, no. 2. — P. 160–184. — doi:10.1016/0005-2787(74)90182-8. — PMID 4601749.
  18. Staphylococcal Food Poisoning. cdc.gov. hhs.gov (4 октября 2016). Дата обращения 23 октября 2016.
  19. "Staphylococcus." Foodsafety.gov, U.S. Department of Health and Human Services, https://www.foodsafety.gov/poisoning/causes/bacteriaviruses/staphylococcus/.
  20. Bergdoll, M.S. 1972. The enterotoxins. In The Staphylococci, ed. J.O. Cohen, 301–331. New York: Wiley-Interscience.
  21. Ryan, Kenneth J.; Ray, C. George. Sherris Medical Microbiology : an Introduction to Infectious Diseases (англ.). — 4th. — New York: McGraw-Hill Education, 2004. — P. 310. — ISBN 978-0-8385-8529-0.
  22. Kiu, R; Hall, L. J. An update on the human and animal enteric pathogen Clostridium perfringens (англ.) // Emerging Microbes and Infections : journal. — 2018. — Vol. 7, no. 141. — P. 141. — doi:10.1038/s41426-018-0144-8. — PMID 30082713.
  23. Katahira J., Inoue N., Horiguchi Y., Matsuda M., Sugimoto N. Molecular cloning and functional characterization of the receptor for Clostridium perfringens enterotoxin (англ.) // J. Cell Biol. (англ.) : journal. — 1997. — Vol. 136, no. 6. — P. 1239—1247. — doi:10.1083/jcb.136.6.1239. — PMID 9087440.
  24. Грачева И.М. Теоретические основы биотехнологии. Биохимические основы синтеза биологически активных веществ. — М.: Элевар, 2003. — С. 379. — 554 с.
  25. Galvano F., Ritieni A., Piva G., Pietri A. Mycotoxins in the human food chain. In: Diaz D.E., editor. The Mycotoxin Blue Book. Nottingham University Press; Nottingham, UK: 2005. pp. 187–224.
  26. Wogan GN, Hecht SS, Felton JS, Conney AH, Loeb LA. Environmental and chemical carcinogenesis. Seminars in Cancer Biology (2004). 14: 473-486.
  27. Ricordy R, Gensabella G, Cacci E, Augusti-Tocco G. Impairment of cell cycle progression of aflatoxin B1 in human cell lines. Mutagenesis (2002). 17: 241-249.
  28. Cole R.J., Cox R.H. The trichothecenes.// In: Cole R.J., Cox R.H. Handbook of Toxic Fungal Metabolites. New York, NY Academic Press, 1981. —P. 152-263.
  29. Wannemacher R.W. Jr. Bunner D.L., Neufeld H.A. Toxicity of trichothecenes and other related mycotoxins in laboratory animals. // In: Smith J.E., Henderson R.S., eds. Mycotoxins and Aimal Foods. Boca Raton, Fla: CRC Press, 1991. —Р. 499-552.
  30. Елинов Н.П. Химическая микробиология. — М.: Высшая школа, 1989. — С. 360—361. — 448 с. — 19 000 экз. — ISBN 5-06-000089-3.
  31. Merck Index, 11th Edition, 7002
  32. Keblys M., Bernhoft A., Höfer C.C., Morrison E., Jørgen H., Larsen S., Flåøyen A. (2004). The effects of the Penicillium mycotoxins citrinin, cyclopiazonic acid, ochratoxin A, patulin, penicillic acid, and roquefortine C on in vitro proliferation of porcine lymphocytes. Mycopathologia (158) 317–324.
  33. Бартон Д., Оллис У. Д. Общая органическая химия. — М.: Химия, 1986. — С. 317. — 704 с.
  34. K. Baumann K. Muenter H. Faulstich. Identification of structural features involved in binding of α-amanitin to a monoclonal antibody (англ.) // Biochemistry : journal. — 1993. — Vol. 32, no. 15. — P. 4043—4050. — doi:10.1021/bi00066a027. — PMID 8471612.
  35. Benjamin, p.200.
  36. Death Cap Mushroom Soup Claims Fourth Victim
  37. Benjamin, p.211
  38. Hall IR. Edible and Poisonous Mushrooms of the World. — Portland, Oregon : Timber Press, 2003. — P. 107. — ISBN 0-88192-586-1.
  39. Бартон Д., Оллис У.Д. Общая органическая химия. — М.: Химия, 1986. — С. 317. — 704 с.
  40. Описание строчка обыкновенного в интернет-журнале «Декоративный сад». Дата обращения 22 декабря 2015.
  41. М.В.Вишневский. Строчки съедобные и ядовитые. Дата обращения 22 декабря 2015.
  42. 1 2 Andary C., Privat G. Variations of monomethylhydrazine content in Gyromitra esculenta (англ.) // Mycologia : journal. — Taylor & Francis, 1985. — Vol. 77, no. 2. — P. 259—264. — doi:10.2307/3793077.
  43. Manfred Hesse. Alkaloids. Nature’s Curse or Blessing. — Wiley-VCH, 2002. — p. 4.
  44. Тарханов И. Р.,. Яды сердечные // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
  45. Sharma, R. K., Consice textbook of forensic medicine & toxicology, Elsevier, 2008
  46. Polynuclear Aromatic Hydrocarbons. In: Guidelines for Drinking-water Quality, 2nd ed. Vol. 2. Health Criteria and other Supporting Information. Geneva, World Health Organization, pp. 123—152.: (page 11) «For ambient air, residential heating and vehicle traffic appear to be the main sources of exposure. In the direct vicinity of an emission source, a maximum intake of 1 µg of BaP per day may be reached (WHO, 1987; LAI, 1992).»
  47. Polynuclear Aromatic Hydrocarbons. In: Guidelines for Drinking-water Quality, 2nd ed. Vol. 2. Health Criteria and other Supporting Information: «The main contributors of PAHs to the total dietary intake appear to be cereals, oils, and fats. The oil and fat group has high individual PAH levels, whereas the cereal group, although never containing high individual PAH concentrations, is a main contributor by weight to total intake in the diet. Smoked meat and fish products, although containing the highest PAH levels, appear to be low to modest contributors, as they are minor components of the usual diet»
  48. Hazard Information Bulletin — Dimethylmercury. OSHA Safety and Health Information Bulletins (SHIBs), 1997—1998
  49. Вредные вещества в промышленности. Справочник для химиков, инженеров и врачей. Изд. 7-е, пер. и доп. В трех томах. Том I. Органические вещества. Под ред. засл. деят. науки проф. Н. В. Лазарева и докт. мед. наук Э. Н. Левиной. Л., «Химия», 1976. 592 стр., 27 табл., библиография —1850 названий.
  50. Kasper, Dennis L.et al. (2004) Harrison’s Principles of Internal Medicine, 16th ed., McGraw-Hill Professional, p. 618, ISBN 0071402357.
  51. Smith, Martyn T. Advances in understanding benzene health effects and susceptibility (англ.) // Ann Rev Pub Health : journal. — 2010. — Vol. 31. — P. 133–48. — doi:10.1146/annurev.publhealth.012809.103646.
  52. Vale A. Methanol (неопр.) // Medicine. — 2007. — Т. 35, № 12. — С. 633–4. — doi:10.1016/j.mpmed.2007.09.014.
  53. http://www.epa.gov/chemfact/s_methan.txt «Humans — Ingestion of 80 to 150 mL of methanol is usually fatal to humans (HSDB 1994).»
  54. Светлана Евгеньевна Траубенберг, А.А. Кочеткова; Нечаев, Алексей Петрович. Пищевая химия. — Санкт-Петербург: ГИОРД, 2003. — С. 516. — 630 с. — 3000 экз. — ISBN 5-901065-38-0.
  55. International Agency for Research on Cancer. Polychlorinated dibenzo-para-dioxins and polychlorinated dibenzofurans. — Lyon : IARC, 1997. — Vol. 69. — ISBN 92-832-1269-X.
  56. The mercury levels in the table, unless otherwise indicated, are taken from: Mercury Levels in Commercial Fish and Shellfish (1990-2010) Архивировано 3 мая 2015 года. U.S. Food and Drug Administration. Accessed 8 January 2012.
  57. Первый искусственный подсластитель был на основе свинца и убивал древних римлян. Фактрум. Дата обращения 31 октября 2015.
  58. Cecil, KM; Brubaker, CJ; Adler, CM; Dietrich, KN; Altaye, M; Egelhoff, JC; Wessel, S; Elangovan, I; Hornung, R. Decreased Brain Volume in Adults with Childhood Lead Exposure (англ.) // PLOS Medicine (англ.) : journal / Balmes, John. — 2008. — Vol. 5, no. 5. — P. e112. — doi:10.1371/journal.pmed.0050112. — PMID 18507499.
  59. Lead found in turmeric (англ.), Stanford News (24 September 2019). Дата обращения 25 сентября 2019.
  60. Kasper, Dennis L.et al. (2004) Harrison’s Principles of Internal Medicine, 16th ed., McGraw-Hill Professional, p. 618, ISBN 0071402357.
  61. Bernstein, JA; Cremonesi, P; Hoffmann, TK; Hollingsworth, J. Angioedema in the emergency department: a practical guide to differential diagnosis and management (англ.) // International Journal of Emergency Medicine : journal. — 2017. — December (vol. 10, no. 1). — P. 15. — doi:10.1186/s12245-017-0141-z. — PMID 28405953.
  62. Agrios, George N. Plant Pathology: Fifth Edition. — Elsevier Academic Press, 2005. — P. 922. — ISBN 0-12-044565-4.
  63. Светлана Евгеньевна Траубенберг, А.А. Кочеткова; Нечаев, Алексей Петрович. Пищевая химия. — 2. — Санкт-Петербург: ГИОРД, 2003. — С. 526. — 640 с. — 3000 экз. — ISBN 5-901065-38-0.
  64. Oxford, 2014, p. 214.
  65. Paul M Dewick. Medicinal Natural Products. A Biosynthetic Approach. Second Edition. — Wiley, 2002. — С. 370—372. — 515 с. — ISBN 0471496405.
  66. Орехов А. П. Химия алкалоидов. — Изд.2. — М.: АН СССР, 1955. — С. 627. — 859 с.
  67. Davidson, Alan. The Oxford Companion to Food. — Oxford University Press, 2006. — P. 324. — ISBN 978-0-19-280681-9.
  68. Cristina J., Costa-Mattioli M. Genetic variability and molecular evolution of hepatitis A virus (англ.) // Virus Res. : journal. — 2007. — August (vol. 127, no. 2). — P. 151—157. — doi:10.1016/j.virusres.2007.01.005. — PMID 17328982.
  69. Коротяев А. И., Бабичев С. А. Медицинская микробиология, иммунология и вирусология. — СПб: СпецЛит, 2010. — С. 1062-1064. — 1992 с. — ISBN 978-5-299-00425-0.
  70. Advances in Agronomy. — Academic Press, 2013. — С. 159—. — ISBN 978-0-12-407798-0.
  71. Immunodeficiency disorders: MedlinePlus Medical Encyclopedia (англ.). medlineplus.gov. Дата обращения 6 мая 2017.
  72. NCI Dictionary of Cancer Terms (англ.). National Cancer Institute. Дата обращения 6 мая 2017.
  73. География раковых заболеваний - Популярные статьи - Онкология - Энциклопедия - MedPortal.ru
  74. Goldblith, S. A. 1963. Radiation preservation of foods — Two decades of research and development. In Ra-diationResearch,155–167.Washington,DC:U.S.DepartmentofCommerce,OfficeofTechnicalServices.
  75. A D Warth. Mechanism of action of benzoic acid on Zygosaccharomyces bailii: effects on glycolytic metabolite levels, energy production, and intracellular pH (англ.) // Appl Environ Microbiol (англ.) : journal. — 1991. — 1 December (vol. 57, no. 12). — P. 3410—3414. — PMID 1785916.
  76. Nordic Food Additive Database Архивная копия от 2 мая 2008 на Wayback Machine Nordic Working Group on Food Toxicology and Risk Assessment.
  77. Светлана Евгеньевна Траубенберг, А.А. Кочеткова; Нечаев, Алексей Петрович. Пищевая химия. — 2-е. — Санкт-Петербург: ГИОРД, 2003. — С. 440—441. — 640 с. — 3000 экз. — ISBN 5-901065-38-0.
  78. Светлана Евгеньевна Траубенберг, А.А. Кочеткова; Нечаев, Алексей Петрович. Пищевая химия. — 2-е. — Санкт-Петербург: ГИОРД, 2003. — С. 442. — 640 с. — 3000 экз. — ISBN 5-901065-38-0.
  79. Швецов А. Б., Козырева А. В., Седунов С. Г., Тараскин К. А. Хлорные дезинфектанты и их применение в современной водоподготовке // Молекулярные технологии. — 2009. — № 3. — С. 98—121.
  80. Biological Safety: Principles and Practices / Edited by Fleming D. O., Hunt D. L.. — Third edition. — Washington: ASM Press, 200o. — P. 269. — ISBN 1-55581-180-9.
  81. Система управления безопасностью пищевых продуктов - In.Business World