Кубическая функция

Материал из Википедии — свободной энциклопедии
(перенаправлено с «Кубическая парабола»)
Перейти к: навигация, поиск
График кубической функции (кубическая парабола)

Куби́ческая фу́нкция в математике — это числовая функция вида

где Другими словами кубическая функция задаётся многочленом третьей степени.

Аналитические свойства[править | править вики-текст]

Производная кубической функции имеет вид . В случае, когда дискриминант полученного квадратного уравнения больше нуля, оно имеет два различных решения, которые соответствуют критическим точкам функции . При этом, одна из этих точек является точкой локального минимума, а другая точкой локального максимума. Равенство нулю второй производной определяет точку перегиба .

График[править | править вики-текст]

График кубической функции называется куби́ческой пара́болой. В литературе часто встречаются альтернативные определения кубической параболы как графика функции или . Легко видеть, что применяя параллельный перенос можно привести кубическую параболу к виду, когда она будет задаваться уравнением . Путём применения аффинных преобразований плоскости можно добиться, чтобы и . В этом смысле все определения будут эквивалентны.

Кроме того, кубическая парабола

Коллинеарность[править | править вики-текст]

Касающиеся прямые в трёх коллинеарных точках графика кубической функции пересекают график снова в коллинеарных точках.[1]

Применение[править | править вики-текст]

Кубическую параболу иногда применяют для расчёта переходной кривой на транспорте, так как её вычисление намного проще, чем построение клотоиды.

См. также[править | править вики-текст]

Примечания[править | править вики-текст]

  1. Whitworth, William Allen. Trilinear Coordinates and Other Methods of Modern Analytical Geometry of Two Dimensions, Forgotten Books, 2012 (orig. Deighton, Bell, and Co., 1866). http://www.forgottenbooks.com/search?q=Trilinear+coordinates&t=books

Литература[править | править вики-текст]