Лазерный дальномер

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Лазерный дальномер RB20000
Купол лазерного дальномера АЗТ-28 («Большая сажень»)

Лазерный дальномер — прибор для измерения расстояний с применением лазерного луча.

Широко применяется в инженерной геодезии, при топографической съёмке, в военном деле, в навигации, в астрономических исследованиях, в фотографии[источник не указан 484 дня]. Современные лазерные дальномеры в большинстве случаев компактны и позволяют в кратчайшие сроки и с большой точностью определить расстояния до интересующих объектов.

Лазерные дальномеры различаются по принципу действия на импульсные и фазовые.

Импульсный лазерный дальномер — это устройство, состоящее из импульсного лазера и детектора излучения. Измеряя время, которое затрачивает луч на путь до отражателя и обратно, и зная значение скорости света, можно рассчитать расстояние между лазером и отражающим объектом. Импульсные лазерные дальномеры обладают большой дальностью работы, т.к. импульс можно выдать с большой мощностью и повышенной скрытностью, включаясь только на время импульса. Поэтому импульсные лазерные дальномеры обычно применяются в военных прицелах.

Фазовые лазерные дальномеры на короткий промежуток времени включают подсветку объекта с разной модулированной частотой и по сдвигу фазы вычисляют расстояние до цели. Они не имеют таймера замера отражённого сигнала, поэтому дешевле, но имеют меньшую дальность (до 1 км) и поэтому обычно используются в бытовых целях или как прицелы стрелкового оружия.

Лазерный дальномер — простейший вариант лидара.

Импульсные лазерные дальномеры[править | править вики-текст]

Способность электромагнитного излучения распространяться с постоянной скоростью даёт возможность определять дальность до объекта. Так, при импульсном методе дальнометрирования используется соотношение

где  — расстояние до объекта,  — скорость света в вакууме,  — показатель преломления среды, в которой распространяется излучение,  — время прохождения импульса до цели и обратно.

Рассмотрение этого соотношения показывает, что потенциальная точность измерения дальности определяется точностью измерения времени прохождения импульса энергии до объекта и обратно. Ясно, что чем короче фронт импульса, тем лучше.

Принцип действия лидара

Фазовые лазерные дальномеры[править | править вики-текст]

Фазовые лазерные дальномеры имеют ошибку на доли длины фазы модуляции, поэтому намного точнее импульсных, а также дешевле, т.к. не имеют сверхточного таймера. Однако необходимость более длительной подсветки цели уменьшает мощность лазера и, как следствие, дальность работы прибора.

Фазовый лазерный дальномер не меняет длину волны самого лазера (это невозможно), а управляет его мощностью, накладывая модулированный сигнал переменной частоты около 500 МГц, что объясняет небольшое "мерцание" бытовых лазерных дальномеров.

Принцип действия фазового лазерного дальномера заключается в том, что при отражении от цели отражённая волна придет в другой фазе. Иными словами, если в данный момент лазер излучает сигнал определённой мощности, то отражённый сигнал будет возвращаться так, как будто мощность излучения была другая, т.к. за время полета света и его отражения изменяется фаза (мощность сигнала) на самом устройстве. Таким образом достигается феноменальная точность вплоть до 0,5 мм, т.к. точность сравнима с длиной волны. Поскольку неизвестно, сколько целых длин волн уложилось при одном измерении, то дальномер меняет частоту модуляции и повторяет замер. Далее процессор в дальномере решает систему линейных уравнений и вычисляет расстояние до цели.[1]

Примечания[править | править вики-текст]

Ссылки[править | править вики-текст]