Лемма Жордана

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску

Лемма Жордана была предложена Жорданом в 1894 году[1]. Применяется в комплексном анализе совместно с основной теоремой о вычетах при вычислении некоторых интегралов, например, контурных. Имеет три формы[2].

Формулировка[править | править код]

Полуокружность (красный цвет) вместе с отрезком (синий цвет) образуют замкнутый контур. Область G состоит из точек верхней полуплоскости, лежащих вне его.

Пусть функция непрерывна в замкнутой области . Обозначим через полуокружность . Пусть также выполнено условие
Тогда при любом имеет место равенство

См. также[править | править код]

Примечания[править | править код]

  1. Jordan С, Cours d'analyse, t. 2, 2 ed., P., 1894, p. 285-86
  2. Математика задачи на интегрирование и дифференцирование. Вычисления несобственного интеграла. Лемма Жордана. Дата обращения: 19 мая 2015. Архивировано из оригинала 20 мая 2015 года.

Ссылки[править | править код]