Магнетрон

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
Фотография магнетрона микроволновой печи Samsung. Сверху — излучающая антенна, справа снизу — разъём для накала катода и анодного напряжения, на передней панели кожуха — рёбра охлаждения

Магнетро́н — электронный электровакуумный прибор, генерирующий СВЧ-излучение при взаимодействии потока электронов с электрической составляющей сверхвысокочастотного поля в пространстве, где постоянное магнитное поле перпендикулярно постоянному электрическому полю[1].

История[править | править код]

В 1912 году швейцарский физик Генрих Грайнахер изучал способы измерения массы электрона. Он собрал установку, в которой внутрь магнита был помещен электровакуумный диод с цилиндрическим анодом вокруг стержневидного катода. Ему не удалось измерить массу электрона из-за проблем с получением достаточного высокого вакуума в лампе, однако в ходе работы были разработаны математические модели движения электронов в скрещённых электрических и магнитных полях.[2][3]

Альберт Халл (США) использовал его данные при попытках обойти патенты Western Electric на триод. Халл планировал использовать для управления потоком электронов между катодом и анодом изменяющееся магнитное поле вместо постоянного электрического. В исследовательских лабораториях General Electric (Schenectady, New York) Халл создал лампы, переключавшие ток изменением соотношения магнитных и электрических полей. В 1921 году он предложил термин «магнетрон», опубликовал несколько статей об их устройстве и получил патенты[4]. Магнетрон Халла не был предназначен для получения высокочастотных электромагнитных волн.

В 1924 году чехословацкий физик А. Жачек[5] и немецкий физик Эрих Хабан (нем. Erich Habann, Йенский университет) независимо друг от друга обнаружили возможность генерации магнетроном дециметровых волн (на частотах 100 МГц — 1 ГГц).

В 1920-е годы исследованиями в области генерирования СВЧ-колебаний с применением магнитных полей занимались также А. А. Слуцкин и Д. С. Штейнберг (1926—1929, СССР), К. Окабе и Х. Яги (1928—1929, Япония), И. Ранци (1929, Италия).

Действующие магнетронные генераторы были созданы независимо и почти одновременно в трёх странах: в Чехословакии (Жачек, 1924 году), в СССР (А. А. Слуцкин и Д. С. Штейнберг, 1925 году), в Японии (Окабе и Яги, 1927 году).

К 1936—1937 годам мощность магнетронных генераторов была повышена в несколько раз (до сотен ватт на волне с длиной 9 см) путём применения многорезонаторного магнетрона состоящего из массивного медного анода с несколькими резонаторными полостями и принудительным охлаждением (М. А. Бонч-Бруевич, Н. Ф. Алексеев, Д. Е. Маляров)[6][7].

Французский учёный Морис Понт с сотрудниками из парижской фирмы «КСФ» в 1935 году создали электронную лампу с вольфрамовым катодом, окружённым резонаторными анодными сегментами. Она была предшественницей магнетронов с резонаторными камерами.

Конструкция многорезонаторного магнетрона Алексеева — Малярова, обеспечивающего 300-ваттное выходную мощность на волне 10 сантиметров, созданного в 1936—1939 годах, стала известна мировому сообществу благодаря публикации 1940 года[8].

Своим появлением на свет многорезонаторный магнетрон Алексеева — Малярова обязан радиолокации. Работы по радиолокации были развернуты в СССР почти одновременно с началом радиолокационных работ в Англии и США. По признанию зарубежных авторов, к началу 1934 года СССР продвинулся в этих работах более, чем США и Англия[9].

В 1940 году британские физики Джон Рэндалл и Гарри Бут (англ. Harry Boot) изобрели резонансный магнетрон[en][10]. Новый магнетрон давал импульсы высокой мощности, что позволило разработать радар сантиметрового диапазона. Радар с короткой длиной волны позволял обнаруживать более мелкие объекты[11]. Кроме того, компактный размер магнетрона привёл к резкому уменьшению размеров радиолокационной аппаратуры[12], что позволило устанавливать её на самолетах[13].

В 1949 году в США инженерами Д. Уилбуром и Ф. Питерсом были разработаны методы изменения частоты магнетрона с помощью управления напряжением (прибор «митрон» — mitron).[14][15]

Начиная с 1960-х годов магнетроны получили применение в СВЧ-печах для домашнего использования[16].

Характеристики[править | править код]

Магнетроны могут работать на различных частотах от 0,5 до 100 ГГц, с мощностями от нескольких Вт до десятков кВт в непрерывном режиме, и от 10 Вт до 5 МВт в импульсном режиме при длительностях импульсов от долей до десятков микросекунд.

Магнетроны обладают высоким КПД, достигающим 80 %.

Магнетроны бывают как неперестраиваемые, так и перестраиваемые в узком диапазоне частот (обычно относительная перестройка менее 10 %). Для медленной перестройки частоты применяются механизмы с ручным управлением, для быстрой (до нескольких тысяч перестроек в секунду) — вращающиеся и вибрационные устройства.

Магнетроны как генераторы сверхвысоких частот широко используются в современной радиолокационной технике, хотя их начинают вытеснять активные фазированные антенные решётки и в микроволновых печах. По состоянию на 2017 год, магнетрон — последний тип массово производимого электронного электровакуумного прибора после свёртывания массового производства кинескопов в начале 2010 годов.

Конструкция[править | править код]

Магнетрон в продольном разрезе
Схема конструкции магнетрона

Резонансный магнетрон состоит из анодного блока, который представляет собой, как правило, металлический толстостенный цилиндр с прорезанными в стенках полостями, выполняющими роль объёмных резонаторов. Резонаторы образуют кольцевую колебательную систему. К анодному блоку закрепляется цилиндрический катод. Внутри катода закреплён подогреватель. Магнитное поле, параллельное оси прибора, создаётся внешними магнитами или электромагнитом.

Для вывода СВЧ энергии используется, как правило, проволочная петля, закреплённая в одном из резонаторов, или отверстие из резонатора наружу цилиндра.

Резонаторы магнетрона образуют кольцевую колебательную систему, около них происходит взаимодействие пучка электронов и электромагнитной волны. Поскольку эта система в результате кольцевой конструкции замкнута сама на себя, то её можно возбудить лишь на определённых видах колебаний, из которых важное значение имеет π-вид. Среди нескольких резонансных частот системы (при N резонаторах в системе возможно существование любого целого количества стоячих волн в диапазоне от 1 до N/2) чаще всего используется π-вид колебаний, при котором фазы в смежных резонаторах различаются на π. При наличии рядом с рабочей частотой (ближе 10 %) других резонансных частот возможны перескоки частоты и нестабильная работа прибора. Для предотвращения подобных эффектов в магнетронах с одинаковыми резонаторами в них могут вводиться различные связки либо применяться магнетроны с разными размерами резонаторов (чётные резонаторы с одним размером, нечётные — с другим).

Отдельные модели магнетронов могут иметь различную конструкцию. Так, резонаторная система выполняется в виде резонаторов нескольких типов: щель-отверстие, лопаточных, щелевых и т. д.

Принцип работы[править | править код]

Схема работы магнетрона

Электроны эмиттируются из цилиндрического катода в пространство взаимодействия, где на них воздействует постоянное электрическое поле анод-катод, постоянное магнитное поле, вектор напряжённости которого перпендикулярен вектору напряжённости электрического постоянного поля и поле электромагнитной волны.

Если бы не было поля электромагнитной волны, электроны бы двигались в скрещённых электрическом и магнитном полях по эпициклоидам (кривая, которую описывает точка на окружности, катящейся по наружной поверхности окружности большего диаметра, в конкретном случае — по наружной поверхности катода). При достаточно сильном магнитном поле (параллельном оси магнетрона) электрон, движущийся по этой кривой, не может достичь анода (по причине действия на него со стороны этого магнитного поля силы Лоренца) и возвращается на катод, при этом говорят, что произошло магнитное запирание диода. В режиме магнитного запирания некоторая часть электронов движется по эпициклоидам в пространстве анод-катод. Под действием собственного поля электронов, а также статистических эффектов (дробовой шум) в этом электронном облаке возникают неустойчивости, которые приводят к генерации электромагнитных колебаний в резонаторных полостях анода, эти колебания усиливаются в резонаторах. Электрическое поле возникшей электромагнитной волны может замедлять или ускорять электроны. Если электрон ускоряется полем волны, то радиус его циклотронного движения увеличивается, и он отклоняется в направлении катода. При этом энергия передаётся от волны к электрону. Если же электрон тормозится полем волны, то его энергия передаётся волне, при этом циклотронный радиус электрона уменьшается, центр окружности вращения смещается ближе к аноду, и он получает возможность достигнуть анода.

Поскольку электрическое поле анод-катод совершает положительную работу только если электрон достигает анода, энергия всегда передаётся в основном от электронов к электромагнитной волне. Однако, если скорость вращения электронов вокруг катода не будет совпадать с фазовой скоростью электромагнитной волны, один и тот же электрон будет попеременно ускоряться и тормозиться волной, в результате эффективность передачи энергии электронов волне будет небольшой. Если средняя скорость вращения электрона вокруг катода совпадает с фазовой скоростью волны, электрон может находиться непрерывно в тормозящей области поля, при этом передача энергии от электрона к волне наиболее эффективна. Такие электроны группируются в сгустки (так называемые «спицы»), вращающиеся вместе с полем вокруг катода. Многократное, в течение ряда периодов, взаимодействие электронов с СВЧ-полем и фазовая синхронизация в магнетроне обеспечивают высокий коэффициент полезного действия и возможность получения больших мощностей.

Применение[править | править код]

Предупреждающий знак «Опасно. Радиоизлучение»

В радарных устройствах волновод подсоединён к антенне, которая может представлять собой как щелевой волновод, так и конический рупорный облучатель в паре с параболическим отражателем (так называемая «тарелка»). Магнетрон управляется короткими высокоинтенсивными импульсами подаваемого напряжения, в результате чего в пространство излучается короткий импульс микроволновой энергии. Небольшая порция этой энергии отражается от объекта радиолокации обратно к антенне, попадает в волновод, которым она направляется к чувствительному приёмнику. После дальнейшей обработки сигнала он, в конце концов, появляется на электронно-лучевой трубке (ЭЛТ) в виде радарной карты А1.

В микроволновых печах волновод заканчивается отверстием закрытым пластиной прозрачной для СВЧ-излучения, оно выходит непосредственно в камеру для приготовления пищи.

Важно, чтобы во время работы печи в ней находились приготовляемые продукты. Тогда микроволны поглощаются в них и не отражаются от стенок камеры обратно в волновод. Возникающая при этом стоячая волна может вызвать электрический пробой воздуха и искрение. Длительное искрение может повредить магнетрон. Если в микроволновой печи готовится небольшое количество пищи, для предотвращения искрения рекомендуется поставить в камеру также стакан с водой для поглощения микроволн и снижения их до уровня, не вызывающего искрение.

Примечания[править | править код]

  1. Кулешов, 2008, с. 353.
  2. H. Greinacher (1912) «Über eine Anordnung zur Bestimmung von e/m» (нем.) (Об аппарате для определения e/m), Verhandlungen der Deutschen Physikalischen Gesellschaft, 14 : 856—864.
  3. «Invention of Magnetron» (англ.).
  4. Albert W. Hull (1921) «The effect of a uniform magnetic field on the motion of electrons between coaxial cylinders», Physical Review, 18 (1) : 31—57. Также: Albert W. Hull, «The magnetron», Journal of the American Institute of Electrical Engineers, vol. 40, no. 9, p. 715—723 (September 1921).
  5. Biographical information about August Žáček:
    • R. H. Fürth, Obituary: «Prof. August Žáček», Nature, vol. 193, no. 4816, p. 625 (1962).
    • «The 70th birthday of Prof. Dr. August Žáček», Czechoslovak Journal of Physics, vol. 6, no. 2, p. 204—205 (1956). Available on-line at: Metapress.com Архивная копия от 12 марта 2012 на Wayback Machine.
  6. Моuromtseeff J. Е. Proc. Natl.-Electr. Conf., 1945, № 33, p. 229—233.
  7. М. М. Лобанов. Расширение исследований по радиообнаружению. Развитие советской радиолокационной техники. Дата обращения 27 января 2016.
  8. Alexeev Н. F., Malyarov Д. Е. Getting powerful vibrations of magnetrons in centimeter wavelength range // Magazine of Technical Physics. 1940. Vol. 10. No. 15, P. 1297—1300.
  9. Brown, Louis. A Radar History of World War II. Technical and Military Imperatives. Bristol: Institute of Physics Publishing, 1999. ISBN 0-7503-0659-9.
  10. The Magnetron. Bournemouth University (1995—2009). Дата обращения 23 августа 2009. Архивировано 23 августа 2011 года.
  11. Перпя Я. З.  Как работает радиолокатор. Оборонгиз, 1955.
  12. Schroter, B. How important was Tizard’s Box of Tricks? (неопр.) // Imperial Engineer. — 2008. — Spring (т. 8). — С. 10.
  13. Who Was Alan Dower Blumlein? (недоступная ссылка). Dora Media Productions (1999—2007). Дата обращения 23 августа 2009. Архивировано 23 августа 2011 года.
  14. The Mitron-An Interdigital Voltage-Tunable Magnetron / Proceedings of the IRE (Volume: 43, Issue: 3, 1955) p. 332—338, doi:10.1109/JRPROC.1955.278140.
  15. 62. Mitrons (англ.) / V. N. Shevchik, Fundamentals of Microwave Electronics: International Series of Monographs on Electronics and Instrumentation, Elsevier, 2014 ISBN 9781483194769, p. 239.
  16. В. Коляда. Прирученные невидимки. Всё о микроволновых печах // Наука и Жизнь, № 10, 2004.

Ссылки[править | править код]

Литература[править | править код]

  • Кулешов В. Н., Удалов Н. Н., Богачев В. М. и др. Генерирование колебаний и формирование радиосигналов. — М.: МЭИ, 2008. — 416 с. — ISBN 978-5-383-00224-7.