Майорановский фермион

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
Майорановский фермион
Double beta decay feynman.svg
Диаграмма Фейнмана двойного безнейтринного бета-распада
Состав Элементарная частица
Семья Фермион
Группа Истинно нейтральная частица
Участвует во взаимодействиях Гравитация
Античастица Сами себе
В честь кого или чего названа Этторе Майорана и фермион
Квантовые числа
Электрический заряд 0
Цветной заряд 0
Барионное число 0
Лептонное число 0
B−L 0
Спин ½ ħ
Магнитный момент 0
Изотопический спин 0
Странность 0
Очарование 0
Прелесть 0
Истинность 0
Гиперзаряд 0
Теоретически обоснована Был впервые рассмотрен итальянским физиком Этторе Майораной в 1930-х гг.[1]

В физике элементарных частиц майорановский фермион, или фермион Майораны — это фермион, который является своей собственной античастицей. Существование таких частиц было впервые рассмотрено итальянским физиком Этторе Майораной в 1930-х гг.[1]

В физике элементарных частиц[править | править код]

Предполагается, что нейтрино может быть либо таким фермионом Майораны, либо фермионом ДиракаСтандартной модели все фермионы, включая нейтрино, являются дираковскими). В первом случае различие между нейтрино и антинейтрино определяется только их спиральностью: превращение нейтрино в антинейтрино можно осуществить переворотом спина (или, например, переходом в систему отсчёта, в которой импульс нейтрино направлен в противоположном направлении, что, правда, осуществимо лишь при ненулевой массе нейтрино). Если электронное нейтрино является фермионом Майораны и при этом массивно, то некоторые изотопы могут испытывать безнейтринный двойной бета-распад; при существующей чувствительности экспериментов этот распад пока не обнаружен, хотя в мире проводятся десятки экспериментов по поиску этого процесса[2][3]. Гипотетические частицы нейтралино в суперсимметричных моделях являются фермионами Майораны.

Майорановские частицы, в отличие от дираковских, не могут обладать магнитным дипольным моментом (кроме недиагональных компонент магнитного момента, изменяющих аромат)[4][5][6]. Слабое взаимодействие с электромагнитными полями делает майорановские фермионы кандидатами для частиц холодной тёмной материи[7][8].

16 июля 2013 года коллаборация GERDA сообщила[9], что в результате обработки данных первой фазы долговременного эксперимента, проводящегося в итальянской подземной лаборатории Гран-Сассо на криогенном полупроводниковом мультидетекторе, состоящем из германия, обогащённого германием-76, не был обнаружен безнейтринный двойной бета-распад этого изотопа (нижнее ограничение на период полураспада — не менее 3·1025 лет). Это, как и ряд более ранних и менее чувствительных экспериментов, свидетельствует в пользу того, что нейтрино не является майорановской частицей; точнее, ограничивает сверху так называемую майорановскую массу электронного нейтрино, которая для дираковского фермиона должна быть в точности равна нулю. Установленное верхнее ограничение равно приблизительно 0,2—0,4 эВ. В настоящее время ряд как действующих, так и находящихся на стадии планирования и разработки экспериментов по поиску безнейтринного двойного бета-распада нацелен на улучшение чувствительности в измерении этого параметра. Последние доступные данные для оценок снизу для полураспада и оценок сверху для массы приведены в таблице на март 2018 года.

Оценка параметров[10]
Эксперимент Изотоп Полураспад Масса
Gerda 76Ge 8.0·1025 лет 0.12–0.26 эВ
Majorana 76Ge 1.9·1025 лет 0.24–0.53 эВ
KamLAND-Zen 136Xe 10.7·1025 лет 0.05–0.16 эВ
EXO 136Xe 1.1·1025 лет 0.17–0.49 эВ
CUORE 130Te 1.5·1025 лет 0.11–0.50 эВ

Уравнение Дирака[править | править код]

Основная статья: Уравнение Майораны

Математически фермионы со спином 1/2 описываются уравнением Дирака вида

где m — масса частицы, а матрицы α и β удовлетворяют антикоммутационным соотношениям {αi, αj}=2δij, {αi, β}=0, β2=1. Так как выбор этих матриц неоднозначен, то их можно выбрать в виде

При этом уравнение, сопряжённое уравнению Дирака, не меняется:

Решению сопряжённого уравнения Дирака соответствует частица, которая является своей собственной античастицей и называется майорановским фермионом[11].

В физике твёрдого тела[править | править код]

Некоторые квазичастицы (различные возбуждения коллективных состояний в твердотельных системах, ведущие себя подобно частицам) могут описываться как майорановские фермионы. Они также называются майорановскими состояниями, чтобы отличать от решения трёхмерного уравнения Дирака. Интерес к таким квазичастицам (предсказанным, но пока не открытым экспериментально) связан с тем, что они теоретически могут использоваться в кубитах для топологического квантового компьютера, при этом из-за своей природы они менее чувствительны к влиянию среды. Возможное экспериментальное обнаружение[12] таких объектов в комбинированных полупроводниковых-сверхпроводниковых наносистемах в сильном магнитном поле требует независимого подтверждения.

Майорановские фемионы могут существовать в экзотических системах, которые достаточно трудно реализуются на практике, например в p-волновых сверхпроводниках[13], полупроводниках в режиме дробного квантового эффекта Холла с фактором заполнением 5/2, на поверхности топологических изоляторов с использованием эффекта близости от s-волновых сверхпроводников[14], либо используя эффект близости от сверхпроводника и ферромагнетика. С другой стороны в 2010 году опубликовали две статьи, которые показали как создать майорановские фермионы в полупроводниковых нанопроволоках[15][16]. Геликонная электронная жидкость возникает в нанопроволоках с сильным спин-орбитальным взаимодействием (пример InAs, углеродные нанотрубки) и, в случае приложения магнитного поля и использования эффекта близости от сверхпроводника, на концах такой нанопроволоки возникают майорановские связные состояния.

Игрушечная модель Китаева[править | править код]

Рис. 1. Разбиение фермионов (первый ряд) на «полуфермионы» или майорановские фермионы в игрушечной модели Китаева в топологически тривиальном (второй ряд) и топологически нетрививальном (третий ряд) случаях.

Алексей Китаев[17] предложил рассмотреть гамильтониан бесспинового p-волнового сверхпроводника в терминах вторичного квантования

где t — интеграл перескока, μ — химический потенциал, Δ и θ — амплитуда и фаза параметра порядка. Можно ввести следующие майорановские фермионные операторы для этой задачи и , которые приводят к новому виду гамильтониана

Теперь рассмотрим два предельных случая что проиллюстрировано на рис. 1: в первом случае химический потенциал меньше нуля, μ<0, а остальные параметры обращаются в ноль, Δ=t=0. Тогда спаривание полуфермионов в фермионы происходит тривиальным образом для каждого узла цепочки. Во втором случае, когда химический потенциал равен нулю, μ=0, а интеграл перескока и параметр порядка равны, Δ=t>0, то сумма превращается в слагаемые спаривающие полуфермионы в соседних узлах, причём крайние полуфермионы выпадают из суммы и образуют дважды вырожденный уровень при нуле энергии. Эти два узла можно превратить в обычный фермион сильно нелокальной природы . А гамильтониан приобретает обычный диагональный вид при преобразовании , :

Фактически эта задача не имеет отношения к реальности, но показывает как получить майорановские связные состояния и какой гамильтониан во взаимодействующей системе должен появиться.

Полупроводниковые нанопроволоки[править | править код]

Рис. 2. Формирование топологического закона дисперсии используя ур. 2 при последовательном включении спин-орбитального взаимодействия, сверхпроводимости и приложении магнитного поля.

В работах 2010 года[18][19] наметился путь реализации майорановских фермионов на практике. Основное достижение заключалось в понимании влияния различных эффектов на майорановские связные состояния. В работе[18] рассматривался гамильтониан (постоянная Планка равна единице) вида

 (1)

где волновая функция имеет вид . Первое слагаемое в подынтегральном выражении отвечает за кинетическую энергию частиц с учётом химического потенциала, второе — спин-орбитальное взаимодействие, третье — зеемановская энергия, четвёртое — сверхпроводимость. Нанопроволока ориентирована в направлении y, спин-орбитальное взаимодействие вдоль x, а магнитное поле вдоль z. Матрицы Паули , действуют в спиновом пространстве и в пространстве частиц-античастиц. Индекс 0 отвечает за единичную матрицу. Гамильтониан имеет собственные значения вида

 (2)

Вблизи нуля волнового вектора возникает запрещённая зона . Когда выполняется условие говорят о возникновении топологически нетривиальной фазы, а точка, где ширина зоны равна нулю — точкой топологического фазового перехода. Она разделяет топологически тривиальную и нетривиальную фазы. Когда выполняется условие на существование топологически нетривиальной фазы на обоих краях нанопроволоки возникают майорановские связанные состояния при нуле энергии. На рис. 2 показано как возникает четыре ветви дисперсионных соотношений из ур. 2 при последовательном включении взаимодействий. Спин-орбитальное взаимодействие вида αk приводит к расщеплению параболического закона дисперсии для нанопроволоки. При добавлении сверхпроводимости добавляется электрон-дырочная симметрия, что удваивает количество дисперсионных кривых и возникает сверхпроводящая щель в спектре возбуждений. При приложении магнитного поля появляется зеемановское расщепление уровней , которое работает против сверхпроводимости и закрывает щель. При равенстве (химический потенциал ) достигается точка фазового перехода и щель пропадает, но при дальнейшем увеличении магнитного поля щель появляется вновь. Эта щель соответствует состоянию топологической сверхпроводимости[18].

Примечания[править | править код]

  1. 1 2 E. Majorana.  // Nuovo Cimento. — 1937. — Vol. 14. — P. 171.
  2. Rodejohann, Werner. Neutrino-less double beta decay and particle physics (англ.) // International Journal of Modern Physics (англ.) : journal. — 2011. — Vol. E20, no. 9. — P. 1833—1930. — DOI:10.1142/S0218301311020186. — Bibcode2011IJMPE..20.1833R. — arXiv:1106.1334.
  3. Schechter, J.; Valle, J.W.F. Neutrinoless double-β decay in SU(2) x U(1) theories (англ.) // Physical Review D : journal. — 1982. — Vol. 25, no. 11. — P. 2951—2954. — DOI:10.1103/PhysRevD.25.2951. — Bibcode1982PhRvD..25.2951S.
  4. Kayser, Boris; Goldhaber, Alfred S. CPT and CP properties of Majorana particles, and the consequences (англ.) // Physical Review D : journal. — 1983. — Vol. 28, no. 9. — P. 2341—2344. — DOI:10.1103/PhysRevD.28.2341. — Bibcode1983PhRvD..28.2341K.
  5. Radescu, E. E. On the electromagnetic properties of Majorana fermions (англ.) // Physical Review D : journal. — 1985. — Vol. 32, no. 5. — P. 1266—1268. — DOI:10.1103/PhysRevD.32.1266. — Bibcode1985PhRvD..32.1266R.
  6. Boudjema, F.; Hamzaoui, C.; Rahal, V.; Ren, H. C. Electromagnetic Properties of Generalized Majorana Particles (англ.) // Physical Review Letters : journal. — 1989. — Vol. 62, no. 8. — P. 852—854. — DOI:10.1103/PhysRevLett.62.852. — Bibcode1989PhRvL..62..852B. — PMID 10040354.
  7. Pospelov, Maxim; ter Veldhuis, Tonnis. Direct and indirect limits on the electro-magnetic form factors of WIMPs (англ.) // Physics Letters B (англ.) : journal. — 2000. — Vol. 480, no. 1—2. — P. 181—186. — DOI:10.1016/S0370-2693(00)00358-0. — Bibcode2000PhLB..480..181P. — arXiv:hep-ph/0003010.
  8. Ho, Chiu Man; Scherrer, Robert J. Anapole Dark Matter (англ.) // Physics Letters B (англ.) : journal. — 2013. — Vol. 722, no. 8. — P. 341—346. — DOI:10.1016/j.physletb.2013.04.039. — Bibcode2013PhLB..722..341H. — arXiv:1211.0503.
  9. GERDA Collaboration. Results on Neutrinoless Double-β Decay of 76Ge from Phase I of the GERDA Experiment // Phys. Rev. Lett.. — 2013. — Т. 111. — С. 122503. — DOI:10.1103/PhysRevLett.111.122503. — arXiv:1307.4720.
  10. GERDA Collaboration. Improved Limit on Neutrinoless Double-β Decay of 76Ge from GERDA Phase II // Phys. Rev. Lett.. — 2018. — Т. 120. — С. 132503. — DOI:10.1103/PhysRevLett.120.132503.
  11. Sato M., Ando Y. Топологические сверхпроводники: обзор. // Rep. Prog. Phys.. — 2017. — Т. 80. — С. 076501. — DOI:10.1088/1361-6633/aa6ac7. — arXiv:1608.03395.
  12. A. D. K. Finck et al. Anomalous Modulation of a Zero-Bias Peak in a Hybrid Nanowire-Superconductor Device // Phys. Rev. Lett. — 2013. — Vol. 110. — P. 126406. — DOI:10.1103/PhysRevLett.110.126406.
  13. Kitaev A. Yu. Unpaired Majorana fermions in quantum wires = Неспаренные майорановские фермионы в квантовых проволоках // Phys.-Usp.. — 2001. — Т. 44. — С. 131. — DOI:10.1070/1063-7869/44/10S/S29. — arXiv:cond-mat/0010440.
  14. Fu L., Kane C. L. Сверхпроводящий эффект близости и майорановские фермионы на поверхности топологического изолятора = Superconducting Proximity Effect and Majorana Fermions at the Surface of a Topological Insulator // Phys. Rev. Lett.. — 2008. — Т. 100. — С. 096407. — DOI:10.1103/PhysRevLett.100.096407.
  15. Oreg Y., Refael G., von Oppen F. Helical Liquids and Majorana Bound States in Quantum Wires // Phys. Rev. Lett.. — 2010. — Т. 105. — С. 177002. — DOI:10.1103/PhysRevLett.105.177002. — arXiv:1003.1145.
  16. Lutchyn R. M., Sau J. D., Das Sarma S. Майорановские фермионы и топологический фазовый переход в гетероструктурах полупроводник-сверхпроводник. = Majorana Fermions and a Topological Phase Transition in Semiconductor-Superconductor Heterostructures // Phys. Rev. Lett.. — 2010. — Т. 105. — С. 077001. — DOI:10.1103/PhysRevLett.105.077001. — arXiv:1002.4033.
  17. Kitaev A., 2001, с. 131.
  18. 1 2 3 Oreg Y., 2010, с. 177002.
  19. Lutchyn R. M., 2010, с. 077001.