Мера Жордана

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску

Мера Жордана — один из способов формализации понятия длины, площади и -мерного объёма в -мерном евклидовом пространстве.

Определение[править | править код]

Меру Жордана можно определить как единственную конечно-аддитивную меру, определённую на кольце многогранников и удовлетворяющую следующим условиям:

  1. Меры конгруэнтных многогранников равны.
  2. Мера единичного куба равна единице.

Максимальное кольцо множеств, на которое мера Жордана продолжается единственным образом, называется кольцом квадрируемых множеств.

Построение[править | править код]

Множество измеримо по Жордану если внутренняя мера Жордана равна внешней мере Жордана.

Мера Жордана параллелепипеда в определяется как произведение

Для ограниченного множества определяются:

  • внешняя мера Жордана
  • внутренняя мера Жордана
    , если

здесь  — параллелепипеды описанного выше вида.

Множество называется измеримым по Жордану (или квадрируемым), если . В этом случае мера Жордана равна .

Свойства[править | править код]

  • Множества, измеримые по Жордану, образуют кольцо, на котором мера Жордана является конечно-аддитивной мерой.
  • Мера Жордана инвариантна относительно движений евклидова пространства.
  • Множество измеримо по Жордану, если для любого существует пара многогранников и таких, что
    и .
  • Ограниченное множество измеримо по Жордану тогда и только тогда, когда его граница имеет нулевую меру Жордана (или, что равносильно, когда его граница имеет нулевую меру Лебега). В частности, все множества, граница которых состоит из конечного числа гладких кривых и точек, измеримы по Жордану. Тем не менее существуют множества, ограниченные простой замкнутой кривой Жордана, которые не измеримы по Жордану.
  • Внешняя мера Жордана одна и та же для и (замыкания множества ) и равна мере Бореля .

История[править | править код]

Приведённое понятие меры ввели Пеано (1887) и Жордан (1892). Впоследствии понятие было обобщено Лебегом на более широкий класс множеств.

Пример множества, неизмеримого по Жордану[править | править код]

Рассмотрим меру Жордана , определённую на . Пусть — множество точек единичного отрезка., — подмножество рациональных точек множества , тогда  — неизмеримое по Жордану множество, так как , то есть верхняя и нижняя мера Жордана не совпадают.

Литература[править | править код]

  • Колмогоров А.Н., Фомин С.В. Элементы теории функций и функционального анализа. — изд. четвёртое, переработанное. — М.: Наука, 1976. — 544 с.
  • Кудрявцев Л.Д., Кутасов А.Д. Сборник задач по математическому анализу, глава 2;
  • Peano, G. Applicazioni geometriche del calcolo infinitesimale. — Torino, 1887;
  • Jordan, C. Journal de Mathématiques Pures et Appliquées. — 1892. — t. 8. — p. 69—99;

См. также[править | править код]