Метод стационарной фазы

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Метод стационарной фазы — метод, использующийся для аппроксимации интегралов вида:

Основы[править | править вики-текст]

Основная идея метода стационарной фазы заключается в сокращении синусоид с быстро меняющейся фазой. Если много синусоид имеют одинаковые фазы, то они складываются, усиливая друг друга. Однако если эти же синусоиды имеют фазы, быстро меняющиеся с изменением частоты, они будут складываться, то усиливая, то ослабляя друг друга.

Пример[править | править вики-текст]

Рассмотрим функцию

Фазовое слагаемое в этой функции, является "стационарным" когда

или эквивалентно,

Корень этого уравнения даёт доминирующую частоту для заданных и . Если мы разложим φ в ряд Тейлора вблизи и пренебрежем слагаемыми старшего порядка по отношению к , то

Когда x большое, даже малая разница обеспечит быстрые осцилляции в подынтегральном выражении, приводя к сокращению. Таким образом, мы можем расширить границы интегрирования вне границы разложения в ряд Тейлора. Чтобы учесть отрицательные частоты, необходимо удвоить действительную часть:

Проинтегрировав, имеем

Книги[править | править вики-текст]

  • Федорюк М.В. Метод перевала. — 1977. — С. 366.
  • А. И. Прилепко, Д. Ф. Калиниченко. Асимптотические методы и специальные функции. — М.: МИФИ, 1980. — С. 107.
  • А. Г. Свешников, А. Н. Тихонов. Теория функций комплексной переменной. — 5-е изд.. — М.: Наука, Физматлит, 1999. — С. 319. — ISBN 5-02-015233-1.

См. также[править | править вики-текст]