Метод характеристик

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Метод характеристик — метод решения дифференциальных уравнений в частных производных. Обычно применяется к решению уравнений в частных производных первого порядка, но он может быть применен и к решению гиперболических уравнений более высокого порядка.

Принцип[править | править вики-текст]

Метод заключается в приведении уравнения в частных производных к семейству обыкновенных дифференциальных уравнений.

Для этого требуется найти кривые (именуемых характеристиками), вдоль которых уравнение в частных производных превращается в обыкновенное дифференциальное уравнение. Как только найдены обыкновенные дифференциальные уравнения, их можно решить вдоль характеристик и найденное решение превратить в решение исходного уравнения в частных производных.

Примеры[править | править вики-текст]

Квазилинейное уравнение на плоскости[править | править вики-текст]

Рассмотрим следующее квазилинейное уравнение относительно неизвестной функции

Рассмотрим поверхность в . Нормаль к этой поверхности задается выражением

В результате получим, что уравнение эквивалентно геометрическому утверждению о том, что векторное поле

является касательным к поверхности в каждой точке.

В этом случае уравнения характеристик могут быть записаны в виде [1]:

или же, если x(t), y(t), z(t) есть функции параметра t:

То есть поверхность образована однопараметрическим семейством кривых описанных кривых. Такая поверхность полностью задаётся одной кривой на ней трансверсальной к векторному полю .

Уравнение переноса[править | править вики-текст]

Рассмотрим частный случай уравнения выше, так называемое уравнение переноса (возникает при решении задачи о свободном расширении газа в пустоту):

где постоянная, а — функция переменных и .

Нам бы хотелось свести это дифференциальное уравнение в частных производных первого порядка к обыкновенному дифференциальному уравнению вдоль соответствующей кривой, т.е. получить уравнение вида

,

где — характеристика.

Вначале мы устанавливаем

Теперь, если положить и , получим

, что является левой частью уравнения переноса, с которого мы начали. Таким образом,

Как видно, вдоль характеристики исходное уравнение превращается в ОДУ , которое говорит о том, что вдоль характеристик решение постоянное. Таким образом, , где точки и лежат на одной характеристике. Видно, что для нахождения общего решения достаточно найти характеристики уравнения, решая следующую систему ОДУ:

  • , при решение — ,
  • , при решение — ,
  • , при решение — .

В нашем случае, характеристики — это семейство прямых с наклоном , и решение остается постоянным вдоль каждой из характеристик.

Примечания[править | править вики-текст]