Метод эллипсоидов

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Метод эллипсоидов — алгоритм нахождения точки, лежащей в пересечении выпуклых множеств.

Ellipsoid-method.png

Описание алгоритма[править | править вики-текст]

В начале выбирается большой шар, содержащий пересечение выпуклых множеств. Способ построения этого шара зависит от задачи. Далее на каждом шаге имеется эллипсоид, заданный центром и векторами . Эллипсоиду принадлежат точки для которых . Отметим, что один и тот же эллипсоид можно задать несколькими способами. Если центр этого эллипсоида принадлежит всем выпуклым множествам, то искомая точка найдена. Иначе существует гиперплоскость , проходящая через точку , такая, что одно из множеств целиком лежит по одну сторону от неё. Тогда можно перейти от исходного базиса к другому базису такому, что параллельны , а направлен в сторону множества. Положим теперь , , при . Этот новый эллипсоид содержит половину старого и имеет меньший объём. Таким образом, объём эллипсоида уменьшается экспоненциально с ростом числа шагов и искомая точка будет найдена за шагов, где  — объем исходного шара, а  — объем области пересечения. Общее время работы алгоритма получается равным , где  — число множеств,  — время проверки принадлежности точки множеству.

Применение к задаче линейного программирования[править | править вики-текст]

Если в задаче линейного программирования удалось построить шар, содержащий искомое решение, то она может быть решена методом эллипсоидов. Для этого вначале находим какую-нибудь точку внутри шара, удовлетворяющую ограничениям задачи. Проводим через неё гиперплоскость , где  — целевая функция, и находим точку в пересечении исходных и новой гиперплоскостей (начиная с текущего эллипсоида). С новой найденной точкой проделываем то же самое. Процесс сходится к оптимальному решению с экспоненциальной скоростью (поскольку с этой скоростью убывает объём эллипсоида).