Микросателлиты

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Примеры микросателлитного анализа

Анализ при помощи более ранней методики гель-электрофореза. На электрофореграмме — образцы ДНК особей литторины Littorina plena [en], амплифицированные посредством ПЦР и праймеров микросателлитного локуса. Полученные фрагменты, соответствующие аллелям микросателлитного локуса, разделены с помощью электрофореза в 5%-ном полиакриламидном геле и окрашены серебром.
Анализ с использованием более новой методики капиллярного электрофореза. На электрофореграмме — участок профиля коротких тандемных повторов (аллелей микросателлитных локусов) человека, полученный при помощи набора для идентификации компании Applied Biosystems.

Микросателли́ты, или короткие тандемные (простые) повторы, — варьирующие участки (локусы) в ядерной ДНК и ДНК органелл (митохондрий и пластид), состоящие из тандемно повторяющихся мономеров длиной меньше 9 пар оснований и образующие поля менее 1 тысячи пар оснований[1]. Являются широко распространёнными молекулярными маркерами в генетических и геномных исследованиях.

Терминология[править | править вики-текст]

Для обозначения этого класса повторов в научной литературе могут употребляться следующие термины, а также образованные от них английские аббревиатуры:

Описание[править | править вики-текст]

Микросателлиты характеризуются высокой скоростью изменения последовательностей, обусловленной «проскальзыванием» при репликации ДНК и точечными мутациями[7]. Обладают высокой степенью полиморфизма[2].

В отличие от сателлитных ДНК микросателлиты локализованы в эухроматиновой части генома[9].

Амплифицированные с помощью ПЦР фрагменты, включающие микросателлитные локусы с фланкирующими последовательностями, разделяют посредством гель-электрофореза или капиллярного электрофореза. По длине фрагментов судят о количестве коротких тандемных повторов и об аллелях локуса.

Филогенетическое дерево, построенное по результатам обследования различных популяций человека с применением микросателлитных локусов[2]

Болезни связанные с микросателлитами[править | править вики-текст]

Увеличение числа повторяющихся элементов микросателлитов, локализованных в экзонах либо в нетранслируемых или регуляторных участков генов может быть причиной развития некоторых заболеваний. К числу таких заболеваний у человека, связанных с экспансией микросателлитов, относятся: болезнь Хантингтона, спинально-бульбарная амиотрофия Кеннеди, спиноцеребеллярная атаксия, синдром ломкой X-хромосомы, атаксия Фридрейха, миотоническая дистрофия 1-го и 2-го типов[1].

Области применения[править | править вики-текст]

Микросателлиты используются как молекулярные маркеры в определении генетического разнообразия, родства, принадлежности к конкретной популяции[3], для исследования гибридизации, эволюционных процессов[2]. Применяются также для поиска паралогов.

Микросателлитные последовательности с повторами небольшой длины, 2—6 нуклеотидов, используются при картировании геномов, в работе с редкими видами и т. д.

Микросателлиты стали удобными и предпочтительными маркерами и нашли самое широкое применение при оценке генетического разнообразия сельскохозяйственных видов растений и животных[5][6]. В 1995 году созданная под эгидой Продовольственной и сельскохозяйственной организации ООН (ФАО) рабочая группа экспертов предложила план «Глобального проекта по поддержанию (оценке) генетического разнообразия домашних животных» (Global Project for the Maintenance (or Measurement) of Domestic Animal Genetic Diversity, сокращённо — MoDAD)[10]. Проект предусматривал задачу количественно оценить генетическое разнообразие среди пород основных 14 видов животных, разводимых человеком, включая четыре вида птиц. Для этой цели предполагалось генотипировать от 6 до 50 пород одного вида с помощью 30 микросателлитных локусов. Примерами успешного апробирования и воплощения рекомендаций рабочей группы MoDAD стали результаты научного проекта европейского консорциума AVIANDIV (по изучению генетического разнообразия более 50 популяций кур) и ряда других исследований на основе микросателлитных маркеров[4][10][11][12][13].

Известны электронные базы данных, в которых содержится информация о микросателлитных локусах[14].

Патологоанатомический анализ[править | править вики-текст]

Анализ коротких тандемных повторов — относительно новая технология генетической экспертизы, ставшая популярной в середине-конце 1990-х годов. Анализ коротких тандемных повторов используют для получения «генетического паспорта» личности. Используемые в настоящее время для патолого-анатомического анализа короткие тандемные повторы — это четырёх- или пятинуклеотидные повторы, поскольку эти повторы обеспечивают высокую вероятность получения безошибочных данных, достаточно массивных, чтобы им не угрожала деградация в неблагоприятных условиях. При этом краткие повторы могут подвергаться воздействию неблагоприятных факторов, таких, как запинания при полимеразной цепной реакции (ПЦР) и предпочтительная амплификация; кроме того, некоторые генетические болезни связаны с трёхнуклеотидными повторами, например, болезнь Хантингтона. Более длинные повторяющиеся последовательности чаще страдают от деградации под воздействием природных факторов, и не амплифицируются с помощью ПЦР так эффективно, как более короткие последовательности.

Анализ выполняется путём выделения ядерной ДНК из клеток исследуемого патологоанатомического образца и последующей амплификации конкретных полиморфных участков выделенной ДНК при помощи ПЦР. Амплифицированные последовательности разделяют при помощи гель-электрофореза или капиллярного электрофореза, что позволяет определить количество коротких тандемных повторов. Как правило, для визуализации продуктов амплификации ДНК используют интеркалирующие красители, например, бромистый этидий (EtBr). Приборы для капиллярного электрофореза также используют флюоресцентные красители.

В США было выделено 13 локусов коротких тандемных повторов в качестве основы для построения генетического профиля человека. Указанные профили хранятся локально, на уровне штатов и общефедеральном уровне в банках ДНК, таких, как en:CODIS. Существует и британская база данных идентификации локусов коротких тандемных повторов, en:UK National DNA Database (NDNAD). В отличие от американцев, британская база основана на 10, а не 13 локусах.

Изучение коротких тандемных повторов в ДНК Y-хромосом часто используют для выявления генеалогии.

См. также[править | править вики-текст]

Примечания[править | править вики-текст]

  1. 1 2 López-Flores I., Garrido-Ramos M. A The repetitive DNA content of eukaryotic genomes // Garrido-Ramos M.A. Genome Dynamics. — 2012. — Т. 7. — С. 1-28. — ISBN 978-3-318-02149-3. — DOI:10.1159/isbn.978-3-318-02150-9
  2. 1 2 3 4 Bowcock A. M., Ruiz-Linares A., Tomfohrde J., Minch E., Kidd J. R., Cavalli-Sforza L. L. High resolution of human evolutionary trees with polymorphic microsatellites (англ.) // Nature : журнал. — London, UK: Nature Publishing Group, 1994. — Vol. 368. — № 6470. — P. 455—457. — ISSN 1476-4687. — DOI:10.1038/368455a0 — PMID 7510853. Архивировано из первоисточника 1 марта 2015.
  3. 1 2 Jarne P., Lagoda P. J. L. Microsatellites, from molecules to populations and back (англ.) // Trends in Ecology & Evolution : журнал. — Amsterdam, The Netherlands: Elsevier Science Publishers B. V., 1996. — Vol. 11. — № 10. — P. 424—429. — ISSN 0169-5347. — DOI:10.1016/0169-5347(96)10049-5 — PMID 21237902. Архивировано из первоисточника 26 февраля 2015.
  4. 1 2 Romanov M. N., Weigend S. (1999-05-16). "Genetic diversity in chicken populations based on microsatellite markers" in Conference «From Jay Lush to Genomics: Visions for Animal Breeding and Genetics», Ames, May 16—18, 1999. Proceedings: 174, Ames, IA, USA: Iowa State University. Abstract 34. OCLC 899128334. Проверено 2005-03-14.  (англ.) Архивировано из первоисточника 14 марта 2005.
  5. 1 2 Pirany N., Romanov M. N., Ganpule S. P., Devegowda G., Threeta Prasad D. Анализ генетической изменчивости внутри и между шестью индийскими популяциями кур с помощью микросателлитных маркеров (англ.) = Microsatellite analysis of genetic diversity in Indian chicken populations // The Journal of Poultry Science : журнал. — Tsukuba, Japan: Japan Poultry Science Association, 2007. — Vol. 44. — № 1. — P. 19—28. — ISSN 1346-7395. — DOI:10.2141/jpsa.44.19 Архивировано из первоисточника 26 февраля 2015.
  6. 1 2 Shahbazi S., Mirhosseini S. Z., Romanov M. N. Genetic diversity in five Iranian native chicken populations estimated by microsatellite markers (англ.) // Biochemical Genetics : журнал. — Berlin, Heidelberg, Germany: Springer Science+Business Media, 2007. — Vol. 45. — № 1—2. — P. 63—75. — ISSN 0006-2928. — DOI:10.1007/s10528-006-9058-6 — PMID 17203406. Архивировано из первоисточника 26 февраля 2015.
  7. 1 2 Pumpernik D., Oblak B., Borstnik B. Replication slippage versus point mutation rates in short tandem repeats of the human genome (англ.) // Molecular Genetics and Genomics : журнал. — Berlin, Germany: Springer-Verlag, 2008. — Vol. 279. — № 1. — P. 53—61. — ISSN 1617-4615. — DOI:10.1007/s00438-007-0294-1 — PMID 17926066. Архивировано из первоисточника 26 февраля 2015.
  8. Kashi Y., King D., Soller M. Simple sequence repeats as a source of quantitative genetic variation (англ.) // Trends in Genetics : журнал. — Amsterdam, The Netherlands: Elsevier Science Publishers B. V., 1997. — Vol. 13. — № 2. — P. 74—78. — ISSN 0168-9525. — DOI:10.1016/S0168-9525(97)01008-1 — PMID 9055609. Архивировано из первоисточника 26 февраля 2015.
  9. Хемлебен В., Беридзе Т. Г., Бахман Л., Коварик Я., Торрес Р. Саттеллитные ДНК // Успехи биологической химии. — 2003. — Т. 43. — С. 267-306.
  10. 1 2 Weigend S., Romanov M. N. The World Watch List for Domestic Animal Diversity in the context of conservation and utilisation of poultry biodiversity (англ.) // World's Poultry Science Journal : журнал. — Cambridge, UK: World's Poultry Science Association; Cambridge University Press, 2002. — Vol. 58. — № 4. — P. 411—430. — ISSN 0043-9339. — DOI:10.1079/WPS20020031 Архивировано из первоисточника 23 февраля 2015.
  11. Romanov M. N., Weigend S. Анализ генетического родства между различными популяциями домашних и диких джунглиевых (банкивских) кур с использованием микросателлитных маркеров (англ.) = Analysis of genetic relationships between various populations of domestic and jungle fowl using microsatellite markers // Poultry Science : журнал. — Champaign, IL, USA; Oxford, UK: Poultry Science Association; Oxford University Press, 2001. — Vol. 80. — № 8. — P. 1057—1063. — ISSN 0032-5791. — DOI:10.1093/ps/80.8.1057 — PMID 11495455. Архивировано из первоисточника 22 февраля 2015.
  12. Weigend S., Romanov M. N. Current strategies for the assessment and evaluation of genetic diversity in chicken resources (англ.) // World's Poultry Science Journal : журнал. — Cambridge, UK: World's Poultry Science Association; Cambridge University Press, 2001. — Vol. 57. — № 3. — P. 275—288. — ISSN 0043-9339. — DOI:10.1079/WPS20010020 Архивировано из первоисточника 26 февраля 2015.
  13. Soller M., Weigend S., Romanov M. N., Dekkers J. C. M., Lamont S. J. Strategies to assess structural variation in the chicken genome and its associations with biodiversity and biological performance (англ.) // Poultry Science : журнал. — Champaign, IL, USA; Oxford, UK: Poultry Science Association Inc; Oxford University Press, 2006. — Vol. 85. — № 12. — P. 2061—2078. — ISSN 0032-5791. — DOI:10.1093/ps/85.12.2061 — PMID 17135660. Архивировано из первоисточника 26 февраля 2015.
  14. Butler J. M., Reeder D. J. (NIST Biochemical Science Division); with invaluable help from J. Redman, C. Ruitberg and M. Tung. STRBase: Short Tandem Repeat DNA: NIST Standard Reference Database SRD 130 (англ.). Material Measurement Laboratory. National Institute of Standards and Technology (NIST) (23 February 2015). Проверено 26 февраля 2015. Архивировано из первоисточника 26 февраля 2015.