Многочлены Чебышёва

Материал из Википедии — свободной энциклопедии
(перенаправлено с «Многочлены Чебышева»)
Перейти к: навигация, поиск
Многочлены Чебышёва первого рода
Общая информация
Формула

Скалярное произведение

Область определения

Дополнительные характеристики
Названы в честь

Чебышёв, Пафнутий Львович

Многочлены Чебышёва второго рода
Общая информация
Формула

Скалярное произведение

Область определения

Дополнительные характеристики
Названы в честь

Чебышёв, Пафнутий Львович

Многочле́ны Чебышёва[К 1] — две последовательности ортогональных многочленов и , названные в честь Пафнутия Львовича Чебышёва:

  • Многочлен Чебышёва первого рода характеризуется как многочлен степени со старшим коэффициентом , который меньше всего отклоняется от нуля на отрезке . Впервые рассмотрены самим Чебышёвым.
Многочлены Чебышёва второго рода
  • Многочлен Чебышёва второго рода характеризуется как многочлен степени со старшим коэффициентом , интеграл от абсолютной величины которого по отрезку принимает наименьшее возможное значение. Впервые рассмотрены в совместной работе двух учеников Чебышёва — Коркина и Золотарёва.
Многочлены Чебышёва первого рода

Многочлены Чебышёва играют важную роль в теории приближений, поскольку корни многочленов Чебышёва первого рода используются в качестве узлов в интерполяции алгебраическими многочленами.

Определения[править | править вики-текст]

Рекуррентные формулы[править | править вики-текст]

Многочлены Чебышёва первого рода могут быть определены с помощью рекуррентного соотношения:

Многочлены Чебышёва второго рода могут быть определены с помощью рекуррентного соотношения:

Явные формулы[править | править вики-текст]

Многочлены Чебышёва являются решениями уравнения Пелля:

в кольце многочленов с вещественными коэффициентами и удовлетворяют тождеству:

Из последнего тождества также следуют явные формулы:

Соотношения[править | править вики-текст]

Тригонометрическое определение[править | править вики-текст]

Многочлены Чебышёва первого рода могут быть также определены с помощью равенства:

или, что почти эквивалентно,

Многочлены Чебышёва второго рода могут быть также определены с помощью равенства:

Примеры[править | править вики-текст]

Несколько первых многочленов Чебышёва первого рода

Несколько первых многочленов Чебышёва второго рода

Свойства[править | править вики-текст]

Многочлены Чебышёва обладают следующими свойствами:

  • Многочлены чётных степеней являются чётными функциями, нечётных — нечётными функциями.
  • Сумма коэффициентов многочленов Чебышёва первого рода равняется 1, а коэффициентов многочленов второго рода равняется .
  • Ортогональность по отношению к соответствующим скалярному произведению (с весом для многочленов первого рода и для многочленов второго рода).
  • Среди всех многочленов, значения которых на отрезке не превосходят по модулю 1, многочлен Чебышёва имеет:
    • наибольший старший коэффициент
    • наибольшее значение в любой точке за пределами
    • если , то , где  — коэффициент многочлена Чебышёва первого рода,  — коэффициент любого из рассматриваемых полиномов.
  • Нули полиномов Чебышёва являются оптимальными узлами в различных интерполяционных схемах. Например, в методе дискретных особенностей, который часто используется при исследовании интегральных уравнений в электродинамике и аэродинамике.
  • На концах и середине отрезка выполняются следующие соотношения:
  • Многочлен Чебышёва первого рода порядка N является частным случаем фигур Лиссажу при соотношении частот, равном N и амплитуде обоих сигналов, равной 1.
  • Многочлен Чебышёва первого и второго рода соотвествуют паре последовательностей Люка и с параметрами :

Применения[править | править вики-текст]

1. Теория приближений, приближение экспериментальных данных(точек) функцией.
Многочлены Чебышева используются для приближения функцией(рядом многочленов Чебышева) экспериментальных данных, для этого область определения экспериментальных данных должна быть линейно отображена в интервал ортогональности аппроксимирующих многочленов, в данном случае это многочлены Чебышева, с интервалом ортогональности .
, где  — линейное отображение,  — область определения точек.
Примером отображения , отображающего заданный интервал в область ортогональности многочленов, , может быть функция:
2. Многочлены Чебышёва применяются для расчета антенной решётки. Мощность излучения каждой антенны рассчитывается при помощи многочленов Чебышёва. Это позволяет управлять формой диаграммы направленности, а точнее соотношением амплитуды основного и боковых лепестков.

Вариации и обобщения[править | править вики-текст]

Комментарии[править | править вики-текст]

  1. Вопреки распространённому произношению старинной дворянской фамилии учёного — Чебышёв[1][2][3] — с ударением на первый слог (Чéбышев), обусловленному характерной для XX века тенденцией к обособлению фамилий на -ов/-ёв от исходных притяжательных прилагательных[2] и традиционным неразличением е/ё на письме, 4-е издание академического «Русского орфографического словаря» (2013), словарь ударений «Собственные имена в русском языке» (2001) и профильные академические издания, последовательно использующие ё при передаче имён и названий, фиксируют в качестве орфографической и орфоэпической нормы написание и произношение Чебышёв[4][5][6][7].

Примечания[править | править вики-текст]

  1. Чебышев Пафнутий Львович / Б. В. Гнеденко // Чаган — Экс-ле-Бен. — М. : Советская энциклопедия, 1978. — (Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров ; 1969—1978, т. 29). — В заголовке статьи: «Чебышев (произносится Чебышёв) Пафнутий Львович…»
  2. 1 2 Унбегаун, Б. О. Русские фамилии / пер. с англ. Л. В. Куркиной, В. П. Нерознака, Е. Р. Сквайрс; ред. Н. Н. Попов. — М. : Прогресс, 1989. — С. 349. — ISBN 5-01-001045-3.
  3. Калиткин, Н. Н. Численные методы : учебное пособие. — 2-е изд., испр. — СПб. : БХВ-Петербург, 2011. — С. 33 [чебышёвская система функций], 465 [чебышёвский набор шагов], 552 [критерий Чебышёва], 574 [многочлены Чебышёва]. — (Учебная литература для вузов). — ISBN 978-5-9775-0500-0.
  4. Чебышёв [многочлены Чебышёва, формула Чебышёва] ; чебышёвский // Русский орфографический словарь / Российская академия наук. Институт русского языка им. В. В. Виноградова; под ред. В. В. Лопатина, О. Е. Ивановой. — Изд. 4-е, испр. и доп. — М. : АСТ-ПРЕСС КНИГА, 2013. — С. 819. — (Фундаментальные словари русского языка). — ISBN 978-5-462-01272-3.
  5. Агеенко, Ф. Л. Чебышёв Пафнýтий // Собственные имена в русском языке : словарь ударений. — М. : Издательство НЦ ЭНАС, 2001. — С. 349. — ISBN 5-93196-107-0.
  6. Журнал вычислительной математики и математической физики. — М. : Издательство АН СССР, 1982. — Т. 22, № 1. — С. 142 [чебышёвский центр множества].
  7. Математический сборник. — М. : Наука, 2004. — Т. 195. — С. 29 [чебышёвский альтернанс], 56—57 [чебышёвский метод].

Литература[править | править вики-текст]

Ссылки[править | править вики-текст]