Множество
Мно́жество — одно из ключевых понятий математики; это математический объект, сам являющийся набором, совокупностью, собранием каких-либо объектов, которые называются элементами этого множества и обладают общим для всех их характеристическим свойством[1].
Изучением общих свойств множеств занимаются теория множеств, а также смежные разделы математики и математической логики. Примеры: множество жителей заданного города, множество непрерывных функций, множество решений заданного уравнения. Множество может быть пустым и непустым, упорядоченным и неупорядоченным, конечным и бесконечным, бесконечное множество может быть счётным или несчётным. Более того, как в наивной, так и в аксиоматической теориях множеств любой объект обычно считается множеством. Понятие множества позволяет практически всем разделам математики использовать общую идеологию и терминологию.
История понятия[править | править код]
Основы теории конечных и бесконечных множеств были заложены Бернардом Больцано, который сформулировал некоторые из её принципов.
С 1872 года по 1897 год (главным образом в 1872—1884 годы) Георг Кантор опубликовал ряд работ, в которых были систематически изложены основные разделы теории множеств, включая теорию точечных множеств и теорию трансфинитных чисел (кардинальных и порядковых). В этих работах он не только ввёл основные понятия теории множеств, но и обогатил математику рассуждениями нового типа, которые применил для доказательства теорем теории множеств, в частности впервые к бесконечным множествам. Поэтому общепризнано, что теорию множеств создал Георг Кантор. В частности определил множество как «единое имя для совокупности всех объектов, обладающих данным свойством». Эти объекты назвал элементами множества. Множество объектов, обладающих свойством , обозначил . Если некоторое множество , то назвал характеристическим свойством множества .
Эта концепция привела к парадоксам, в частности, к парадоксу Рассела.
Так как теория множеств фактически используется как основание и язык всех современных математических теорий, в 1908 году теория множеств была аксиоматизирована независимо Бертраном Расселом и Эрнстом Цермело. В дальнейшем многие исследователи пересматривали и изменяли обе системы, в основном сохранив их характер. До сих пор они всё ещё известны как теория типов Рассела и теория множеств Цермело. Впоследствии теорию множеств Кантора стало принято называть наивной теорией множеств, а вновь построенную — аксиоматической теорией множеств.
В практике, сложившейся с середины XX века множество определяется как модель, удовлетворяющая аксиомам ZFC (аксиомы Цермело — Френкеля с аксиомой выбора). При таком подходе в некоторых математических теориях возникают совокупности объектов, которые не являются множествами. Такие совокупности называются классами (различных порядков).
Элемент множества[править | править код]
Объекты, из которых состоит множество, называют элементами множества или точками множества. Множества чаще всего обозначают заглавными буквами латинского алфавита, его элементы — строчными. Если — элемент множества , то записывают (« принадлежит »). Если не является элементом множества , то записывают (« не принадлежит »). В отличие от мультимножества каждый элемент множества уникален, и во множестве не может быть двух идентичных элементов. Иначе говоря, добавление к множеству элементов, идентичных уже принадлежащим множеству, не меняет его:
- .
Равенство двух множеств означает
Задание множества[править | править код]
Существуют два основных способа задания множеств: перечисление и описание.
Первый способ состоит в том, что задаётся и перечисляется полный список элементов, входящих в множество. Например, множество неотрицательных чётных чисел, меньших 10 можно задать в виде списка: . Данный способ удобно применять лишь к ограниченному числу конечных множеств.
Второй способ применяется, когда множество нельзя или затруднительно задать с помощью списка. В таком случае множества определяются свойствами их элементов. Множество задано, если указано условие , которому удовлетворяют все элементы, принадлежащие множеству и которому не удовлетворяют элементы, не принадлежащие множеству .
Обозначение
используется для задания множества ; оно означает, что множество состоит из тех и только тех элементов множества , для которых выполнено условие .
Например, график функции можно задать следующим образом:
Некоторые виды множеств и сходных объектов[править | править код]
Специальные множества[править | править код]
- Пустое множество — множество, не содержащее ни одного элемента.
- Одноэлементное множество — множество, состоящее из одного элемента.
- Универсальное множество (универсум) — множество, содержащее все мыслимые объекты. В связи с парадоксом Рассела данное понятие трактуется в настоящее время более узко как «множество, включающее все множества, участвующие в рассматриваемой задаче».
Сходные объекты[править | править код]
- Кортеж (в частности, упорядоченная пара) — упорядоченная совокупность конечного числа именованных объектов. Записывается внутри круглых или угловых скобок, а элементы могут повторяться.
- Мультимножество (в теории сетей Петри называется «комплект») — множество с кратными элементами.
- Пространство — множество с некоторой дополнительной структурой.
- Вектор — элемент линейного пространства, содержащий конечное число элементов некоторого поля в качестве координат. Порядок имеет значение, элементы могут повторяться.
- Последовательность — функция одного натурального переменного. Представляется как бесконечный набор элементов (не обязательно различных), порядок которых имеет значение.
- Нечёткое множество — математический объект, подобный множеству, принадлежность которому задаётся не отношением, а функцией. Иными словами, относительно элементов нечёткого множества можно говорить «в какой мере» они в него входят, а не просто, входят они в него или нет.
По иерархии[править | править код]
- Система множеств (множество множеств) — множество, все элементы которого также являются множествами, обычно схожего происхождения (например, все они могут быть подмножествами некоторого другого множества)[2].
- Алгебра множеств, кольцо множеств — примеры типов структур, являющихся системами множеств.
- Булеан — множество всех подмножеств данного множества.
- Семейство множеств — индексированный аналог системы множеств, см. семейство (математика).
- Подмножество
- Надмножество
Отношения между множествами[править | править код]
Два множества и могут вступать друг с другом в различные отношения.
- включено в , если каждый элемент множества принадлежит также и множеству :
- включает , если включено в :
- равно , если и включены друг в друга:
- Для любых множеств
- Если , то
- Если , , то .
- строго включено в , если включено в , но не равно ему:
- строго включает , если строго включено в :
- и не пересекаются, если у них нет общих элементов:
- и не пересекаются
- и находятся в общем положении, если существует элемент, принадлежащий исключительно множеству , элемент, принадлежащий исключительно множеству , а также элемент, принадлежащий обоим множествам:
- и находятся в общем положении
Операции над множествами[править | править код]
Бинарные операции[править | править код]
Основные бинарные операции, определяемые над множествами:
- пересечение:
- .
- объединение:
- .
- Если множества и не пересекаются, то . Их объединение обозначают также: .
Для объяснения смысла операций часто используются диаграммы Венна, на которых представлены результаты операций над геометрическими фигурами как множествами точек.
Всякая система множеств, замкнутая относительно операций объединения и пересечения, образует относительно объединения и пересечения дистрибутивную решётку.
Унарные операции[править | править код]
Дополнение определяется следующим образом:
- .
Операция дополнения подразумевает некоторый зафиксированный универсум (универсальное множество , которое содержит ), и сводится к разности множеств с этим универсумом:
- .
Система множеств с фиксированным универсумом, замкнутая относительно операций объединения, пересечения с введённым таким образом дополнением образует булеву алгебру.
Булеан — множество всех подмножеств:
- .
Обозначение происходит из свойства мощности множества всех подмножеств конечного множества:
- .
Булеан порождает систему множеств с фиксированным универсумом , замкнутую относительно операций объединения и пересечения, то есть, образует булеву алгебру.
Приоритет операций[править | править код]
Последовательность выполнения операций над множествами, как и обычно, может быть задана скобками. При отсутствии скобок сначала выполняются унарные операции (дополнение), затем — пересечения, затем — объединения,разности и симметрической разности[источник не указан 483 дня]. Операции одного приоритета выполняются слева направо. При этом надо иметь в виду, что в отличие от арифметических сложения и вычитания, для которых верно, что , для аналогичных операций над множествами это неверно. Например, если то но, в то же время, .
Мощность[править | править код]
Мощность множества — характеристика множества, обобщающая понятие о количестве элементов для конечного множества таким образом, чтобы множества, между которыми возможно установление биекции были равномощны. Обозначается или . Мощность пустого множества равна нулю, для конечных множеств мощность совпадает с числом элементов, для бесконечных множеств вводятся специальные кардинальные числа, соотносящиеся друг с другом по принципу включения (если , то ) и распространением свойства мощности булеана конечного множества: на случай бесконечных множеств (само обозначение мотивировано этим свойством).
Наименьшая бесконечная мощность обозначается , это мощность счётного множества. Мощность континуума, биективного булеану счётного множества обозначается или . Континуум-гипотеза — предположение о том, что между счётной мощностью и мощностью континуума нет промежуточных мощностей.
Примечания[править | править код]
- ↑ Множество // Математическая энциклопедия (в 5 томах). — М.: Советская Энциклопедия, 1982. — Т. 3. — С. 762.
- ↑ Студопедия — Теория множеств
Литература[править | править код]
- К. Куратовский, А. Мостовский. Теория множеств / Перевод с английского М. И. Кратко под редакцией А. Д. Тайманова. — М.: Мир, 1970. — 416 с.
- Столл Р. Р. Множества. Логика. Аксиоматические теории. / Перевод с английского Ю. А. Гастева и И. Х. Шмаина под редакцией Ю. А. Шихановича. — М.: Просвещение, 1968. — 232 с.