Морской лёд
Морско́й лёд — лёд, образовавшийся в море (океане) при замерзании воды. Так как морская вода солёная, замерзание воды с солёностью, равной средней солёности Мирового океана, происходит при температуре около −1,8 °C.
Оценка количества (густоты) морского льда даётся в баллах — от 0 (чистая вода) до 10 (сплошной лёд).
Свойства[править | править код]

Важнейшие свойства морского льда — пористость и солёность, определяющие его плотность (от 0,85 до 0,94 г/см³). Из-за малой плотности льда льдины возвышаются над поверхностью воды на 1/7—1/10 их толщины. Таяние морского льда начинается при температуре выше −2,3 °C. По сравнению с пресноводным он труднее поддаётся раздроблению на части и более эластичен[1].
Солёность[править | править код]
Солёность морского льда зависит от солёности воды, скорости льдообразования, интенсивности перемешивания воды и его возраста[2]. В среднем солёность льда в 4 раза ниже солёности образовавшей его воды, колеблясь от 0 до 15 промилле (в среднем 3—8 ‰)[3].
Плотность[править | править код]
Морской лёд является сложным физическим телом, состоящим из кристаллов пресного льда, рассола, пузырьков воздуха и различных примесей. Соотношение составляющих зависит от условий льдообразования и последующих ледовых процессов и влияет на среднюю плотность льда. Так, наличие пузырьков воздуха (пористость[4]) значительно уменьшает плотность льда. Солёность льда оказывает на плотность меньшее воздействие, чем пористость. При солёности льда 2 промилле и нулевой пористости плотность льда составляет 922 килограмма на кубический метр, а при пористости 6 процентов понижается до 867. В то же время при нулевой пористости увеличение солёности с 2 до 6 промилле приводит к увеличению плотности льда только с 922 до 928 килограммов на кубический метр[5].
Теплофизические свойства[править | править код]
Средняя удельная теплопроводность морского льда примерно в пять раз выше, чем у воды, и в восемь раз выше, чем у снега, и составляет около 2,1 Вт/м·градус, но к нижней и верхней поверхностям льда может уменьшаться из-за увеличения солёности и роста количества пор.
Теплоёмкость морского льда приближается к теплоёмкости пресного льда с понижением температуры льда, когда солевой рассол вымерзает. С ростом солёности, а следовательно, увеличением массы рассола, теплоёмкость морского льда всё больше зависит от теплоты фазовых преобразований, то есть изменений температуры. Эффективная теплоёмкость льда увеличивается с повышением его солёности и температуры.
Теплота плавления (и кристаллизации) морского льда колеблется от 150 до 397 кДж/кг в зависимости от температуры и солёности (с повышением температуры или солёности теплота плавления понижается).
Оптические свойства[править | править код]
Чистый лёд прозрачен для световых лучей. Включения (воздушные пузырьки, солевой рассол, пыль) рассеивают лучи, значительно уменьшая прозрачность льда.
Оттенки цвета морского льда в больших массивах варьируют от белого до коричневого.
Белый лёд образуется из снега и имеет много пузырьков воздуха или ячеек с рассолом.
Молодой морской лёд зернистой структуры со значительным количеством воздуха и рассола часто имеет зелёный цвет.
Многолетние торосистые льды, из которых выдавлены примеси, и молодые льды, которые замерзали в спокойных условиях, часто имеют голубой или синий цвет. Голубым также бывает глетчерный лёд и айсберги. В голубом льду чётко видна игольчатая структура кристаллов.
Коричневый или желтоватый лёд имеет речной или прибрежный генезис, в нём имеются примеси глины или гуминовых кислот.
Начальные виды льда (ледяное сало, шуга) имеют тёмно-серый цвет, иногда со стальным оттенком. С увеличением толщины льда его цвет становится светлее, постепенно переходя в белый. При таянии тонкие льдинки снова становятся серыми.
В случае, если лёд содержит большое количество минеральных или органических примесей (планктон, эоловые взвеси, бактерии), его цвет может меняться на красный, розовый, жёлтый, вплоть до чёрного.
В связи со свойством льда задерживать длинноволновую радиацию, он способен создавать парниковый эффект, что приводит к нагреванию находящейся под ним воды.
Механические свойства[править | править код]
Под механическими свойствами льда понимают его способность противостоять деформациям.
Типичные виды деформации льда: растяжение, сжатие, сдвиг, изгиб. Выделяют три стадии деформации льда: упругая, упруго-пластическая, стадия разрушения. Учёт механических свойств льда важен при определении оптимального курса ледоколов, а также при размещении на льдинах грузов, полярных станций, при расчёте прочности корпуса судна[6].
Традиционно физико-механические свойства морского льда изучаются на основании кернов и образцов, выбуренных из ровных ледяных полей, торосов и стамух. В последнее время для определения прочности льда безобразцовым методом также стал применяться скважинный зонд-индентор, состоящий из гидростанции, индентора, регистратора показаний датчиков давления, перемещения и сигналов трещинообразования во льду во время испытания. Применение данного способа позволяет значительно сократить временные затраты на исследования[7].
Условия образования[править | править код]
При образовании морского льда между целиком пресными кристаллами льда оказываются мелкие капли солёной воды, которые постепенно стекают вниз. Температура замерзания и температура наибольшей плотности морской воды зависит от её солёности. Морская вода, солёность которой ниже 24,695 промилле (так называемая солоноватая вода), при охлаждении сначала достигает наибольшей плотности, как и пресная вода, а при дальнейшем охлаждении и отсутствии перемешивания быстро достигает температуры замерзания. Если солёность воды выше 24,695 промилле (солёная вода), она охлаждается до температуры замерзания при постоянном увеличении плотности с непрерывным перемешиванием (обменом между верхними холодными и нижними более тёплыми слоями воды), что не создаёт условий для быстрого выхолаживания и замерзания воды, то есть при одинаковых погодных условиях солёная океаническая вода замерзает позже солоноватой.
Классификации[править | править код]
Морской лёд по своему местоположению и подвижности разделяется на три типа:
- припай,
- плавучие (дрейфующие) льды,
- паковые многолетние льды (пак).
По стадиям развития льда выделяют несколько так называемых начальных видов льда (в порядке времени образования):
- ледяные иглы,
- ледяное сало,
- снежура,
- шуга,
- внутриводный (в том числе донный или якорный), образующийся на некоторой глубине и на предметах, находящихся в воде, в условиях турбулентного перемешивания воды.
Дальнейшие по времени образования виды льда — ниласовые льды:
- нилас, образующийся при спокойной поверхности моря из сала и снежуры (тёмный нилас до 5 см толщиной, светлый нилас до 10 см толщиной) — тонкая эластичная корка льда, легко прогибающаяся на воде или зыби и образующая при сжатии зубчатые наслоения;
- склянки, образующиеся в распреснённой воде при спокойном море (в основном в заливах, около устьев рек), — хрупкая блестящая корка льда, которая легко ломается под действием волны и ветра;
- блинчатый лёд, образующийся при слабом волнении из ледяного сала, снежуры или шуги или вследствие разлома в результате волнения склянки, ниласа или так называемого молодого льда, представляет собой пластины льда округлой формы от 30 см до 3 м в диаметре и толщиной 10—15 см с приподнятыми краями из-за обтирания и ударов льдин.
Дальнейшей стадией развития льдообразования являются молодые льды, которые подразделяются на серый (толщина 10—15 см) и серо-белый (толщиной 15—30 см) лёд.
Морской лёд, развивающийся из молодого льда и имеющий возраст не более одного зимнего периода, называется однолетним льдом. Этот однолетний лёд может быть:
- тонким однолетним льдом — белый лёд толщиной 30—70 см,
- средней толщины — 70—120 см,
- толстым однолетним льдом — толщиной более 120 см.
Если морской лёд подвергался таянию хотя бы в течение одного года, он относится к старым льдам. Старые льды подразделяются на:
- остаточный однолетний — не растаявший летом лёд, находящийся вновь в стадии замерзания,
- двухлетний — просуществовавший более одного года (толщина достигает 2 м),
- многолетний — старый лёд толщиной 3 м и более, переживший таяние не менее двух лет. Поверхность такого льда покрыта многочисленными неровностями, буграми, образовавшимися в результате неоднократного таяния. Нижняя поверхность многолетних льдов также отличается большой неровностью и разнообразием формы.
Толщина многолетних льдов в Северном Ледовитом океане в некоторых районах достигает 4 м.
В антарктических водах в основном находится однолетний лёд толщиной до 1,5 м, который исчезает в летнее время.
По структуре морской лёд условно делится на игольчатый, губчатый и зернистый, хотя обычно он встречается смешанной структуры.
Области распространения[править | править код]
По продолжительности сохранения ледяного покрова и его генезису акваторию Мирового океана обычно делят на шесть зон[8].
- Акватории, на которых ледяной покров присутствует круглый год (центр Арктики, северные районы морей Северного Ледовитого океана, антарктические моря Амундсена, Беллинсгаузена, Уэдделла.
- Акватории, на которых льды ежегодно меняются (Баренцево, Карское моря).
- Акватории с сезонным ледяным покровом, образующимся зимой и полностью исчезающим летом (Азовское, Аральское, Балтийское, Белое, Каспийское, Охотское, Японское моря).
- Акватории, на которых льды образуются только в очень холодные зимы (Мраморное, Северное, Чёрное моря).
- Акватории, на которых отмечается лёд, принесённый течениями из-за их границ (Гренландское море, район острова Ньюфаундленд, значительная часть Южного океана, включая область распространения айсбергов.
- Остальные акватории, составляющие бо́льшую часть Мирового океана, на поверхности которых льдов не бывает.
Примечания[править | править код]
- ↑ Sergey M Kovalev, Victor N Smirnov, Vladimir A Borodkin, Aleksandr I Shushlebin, Nikolay V Kolabutin. Physical and Mechanical Characteristics of Sea Ice in the Kara and Laptev Seas // International Journal of Offshore and Polar Engineering. — 2019-12-01. — Т. 29, вып. 4. — С. 369–374. — ISSN 1053-5381. — doi:10.17736/ijope.2019.jc767.
- ↑ Чем старше лёд, тем меньше его солёность, так как солёный рассол при таянии стекает в море
- ↑ В Антарктических водах встречались льды с солёностью более 22 промилле.
- ↑ При исследовании пористость оценивается в процентах от общего объёма образца льда.
- ↑ По данным таблицы в издании: Жуков Л. А. Общая океанология. — Л.: Гидрометиздат, 1976. с. 323
- ↑ V.N. Smirnov, S.M. Kovalev, A.V. Chernov, A.A. Nubom, N.V. Kolabutin, E.V. Shimanchuk, K.A. Kornishin, Y.O. Efimov, P.A. Tarasov. Large-Scale Ice Crushing Experiments with Icebreaker (англ.) // Proceedings of the Twenty-ninth (2019) International Ocean and Polar Engineering Conference : Труды конференции. — 2019. — 16 июня. — С. 792-798. — ISSN 1098-6189.
- ↑ К.А. Корнишин, В.А. Павлов, А.И. Шушлебин, С.М. Ковалев, Я.О. Ефимов. Определение локальной прочности льда с помощью скважинного зонда-индентора в морях Карском и Лаптевых (рус.) // Научно-технический вестник ОАО «НК Роснефть : Журнал. — 2016. — Январь (№ 1). — С. 47-51. — ISSN 2074-2339.
- ↑ Жуков Л. А. Общая океанология. — Л.: Гидрометиздат, 1976. с. 334
Литература[править | править код]
- Дерюгин К. К., Степанюк И. А. Морская гидрометрия. — Л.: Гидрометиздат, 1974. 392 с.
- Дитрих Г., Калле К. Общее мореведение. — Л.: Гидрометеоиздат, 1961. 464 с.
- Снежинский В. А. Практическая океанография. — Л.: Гидрометеоиздат, 1954. 672 с.
- Шамраев Ю. И., Шишкина Л. А. Океанология. — Л.: Гидрометеоиздат, 1980. 386 с.
- Четырёхъязычный энциклопедический словарь терминов по физической географии. — М.: Советская энциклопедия, 1980. С. 271.
См. также[править | править код]
Ссылки[править | править код]
- [bse.sci-lib.com/article078325.html Определение в БСЭ]
- Ледовые термины
Некоторые внешние ссылки в этой статье ведут на сайты, занесённые в спам-лист. |