Научный метод

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Нау́чный ме́тод — совокупность основных способов получения новых знаний и методов решения задач в рамках любой науки.

Метод включает в себя способы исследования феноменов, систематизацию, корректировку новых и полученных ранее знаний. Умозаключения и выводы делаются с помощью правил и принципов рассуждения на основе эмпирических (наблюдаемых и измеряемых) данных об объекте[1]. Базой получения данных являются наблюдения и эксперименты. Для объяснения наблюдаемых фактов выдвигаются гипотезы и строятся теории, на основании которых формулируются выводы и предположения. Полученные прогнозы проверяются экспериментом или сбором новых фактов.[2].

Важной стороной научного метода, его неотъемлемой частью для любой науки, является требование объективности, исключающее субъективное толкование результатов. Не должны приниматься на веру какие-либо утверждения, даже если они исходят от авторитетных учёных. Для обеспечения независимой проверки проводится документирование наблюдений, обеспечивается доступность для других учёных всех исходных данных, методик и результатов исследований. Это позволяет не только получить дополнительное подтверждение путём воспроизведения экспериментов, но и критически оценить степень адекватности (валидности) экспериментов и результатов по отношению к проверяемой теории.

История[править | править исходный текст]

Отдельные части научного метода применялись ещё философами древней Греции. Ими были разработаны правила логики и принципы ведения спора, вершиной которых стала софистика. Однако целью софистов была не столько научная истина, сколько победа в судебных процессах, где формализм превышал любой другой подход. При этом выводам, полученным в результате рассуждений, отдавалось предпочтение по сравнению с наблюдаемой практикой. Знаменитым примером является утверждение, что быстроногий Ахиллес никогда не догонит черепаху. Оппоненту софистов Сократу приписывают высказывание о том, что в споре рождается истина.

В XX веке была сформулирована гипотетически-дедуктивная модель научного метода[3], состоящая в последовательном применении следующих шагов:

  1. Используйте опыт: Рассмотрите проблему и попытайтесь осмыслить её. Найдите известные ранее объяснения. Если это новая для вас проблема, переходите к шагу 2.
  2. Сформулируйте предположение: Если ничего из известного не подходит, попробуйте сформулировать объяснение, изложите его кому-то другому или в своих записях.
  3. Сделайте выводы из предположения: Если предположение (шаг 2) истинно, какие из него следствия, выводы, прогнозы можно сделать по правилам логики?
  4. Проверка: Найдите факты, противоречащие каждому из этих выводов, с тем чтобы опровергнуть гипотезу (шаг 2) (см. фальсифицируемость). Использование выводов (шаг 3) в качестве доказательств гипотезы (шаг 2) является логической ошибкой. Эта ошибка называется «подтверждение следствием» (англ. Affirming the consequent, греч. Επιβεβαίωση του επομένου)

Около тысячи лет назад Ибн ал-Хайсам продемонстрировал важность 1-го и 4-го шагов. Галилей в трактате «Беседы и математические обоснования двух новых наук, касающихся механики и законов падения» (1638) также показал важность 4-го шага (называемого также эксперимент)[4]. Шаги метода можно выполнять по порядку — 1, 2, 3, 4. Если по итогам шага 4 выводы из шага 3 выдержали проверку, можно продолжить и перейти снова к 3-му, затем 4-му, 1-му и так далее шагам. Но если итоги проверки из шага 4 показали ложность прогнозов из шага 3, следует вернуться к шагу 2 и попытаться сформулировать новую гипотезу («новый шаг 2»), на шаге 3 обосновать на основе гипотезы новые предположения («новый шаг 3»), проверить их на шаге 4 и так далее.

Следует заметить, что если следовать критерию Поппера, то при учете полной группы событий и невозможности всеобъемлющего восприятия действительности, научный метод никогда не сможет абсолютно верифицировать (доказать истинность) гипотезы (шаг 2); возможно лишь опровергнуть гипотезу — доказать её ложность.

Виды научного метода[править | править исходный текст]

Теоретический научный метод[править | править исходный текст]

Теории[править | править исходный текст]

Тео́рия (др.-греч. θεωρία «рассмотрение, исследование») — система знаний, обладающая предсказательной силой в отношении какого-либо явления. Теории формулируются, разрабатываются и проверяются в соответствии с научным методом.

Стандартный метод проверки теорий — прямая экспериментальная проверка («эксперимент — критерий истины»). Однако часто теорию нельзя проверить прямым экспериментом (например, теорию о возникновении жизни на Земле), либо такая проверка слишком сложна или затратна (макроэкономические и социальные теории), и поэтому теории часто проверяются не прямым экспериментом, а по наличию предсказательной силы — то есть если из неё следуют неизвестные/незамеченные ранее события, и при пристальном наблюдении эти события обнаруживаются, то предсказательная сила присутствует.

Гипотезы[править | править исходный текст]

Гипо́теза (от др.-греч. ὑπόθεσις — «основание», «предположение») — недоказанное утверждение, предположение или догадка.

Как правило, гипотеза высказывается на основе ряда подтверждающих её наблюдений (примеров) и поэтому выглядит правдоподобно. Гипотезу впоследствии или доказывают, превращая её в установленный факт (см. теорема, теория), или же опровергают (например, указывая контрпример), переводя в разряд ложных утверждений.

Недоказанная и неопровергнутая гипотеза называется открытой проблемой.

Научные законы[править | править исходный текст]

Зако́н — вербальное и/или математически сформулированное утверждение, которое описывает соотношения, связи между различными научными понятиями, предложенное в качестве объяснения фактов и признанное на данном этапе научным сообществом согласующимся с экспериментальными данными. Непроверенное научное утверждение называют гипотезой.

Научное моделирование[править | править исходный текст]

Моделирование — это изучение объекта посредством моделей с переносом полученных знаний на оригинал. Предметное моделирование — создание моделей уменьшенных копий с определёнными свойствами, дублирующими оригинальные. Мысленное моделирование — с использованием мысленных образов. Знаковое или символическое — представляет собой использование формул, чертежей. Компьютерное — компьютер является и средством, и объектом изучения, моделью является компьютерная программа.

Эмпирический научный метод[править | править исходный текст]

Эксперименты[править | править исходный текст]

Экспериме́нт (от лат. experimentum — проба, опыт) в научном методе — набор действий и наблюдений, выполняемых для проверки (истинности или ложности) гипотезы или научного исследования причинных связей между феноменами. Эксперимент является краеугольным камнем эмпирического подхода к знанию. Критерий Поппера выдвигает в качестве главного отличия научной теории от псевдонаучной возможность постановки эксперимента, прежде всего такого, который может дать опровергающий эту теорию результат. Одно из главных требований к эксперименту — его воспроизводимость.

Эксперимент делится на следующие этапы:

  • Сбор информации;
  • Наблюдение явления;
  • Анализ;
  • Выработка гипотезы, чтобы объяснить явление;
  • Разработка теории, объясняющей феномен, основанный на предположениях, в более широком плане.

Научные исследования[править | править исходный текст]

Научное исследование — процесс изучения результатов наблюдений, экспериментов, концептуализации и проверки теории, связанный с получением научных знаний.

Виды исследований:

  • Фундаментальное исследование, предпринятое главным образом, чтобы производить новые знания независимо от перспектив применения.
  • Прикладное исследование.

Наблюдения[править | править исходный текст]

Наблюдение — это целенаправленный процесс восприятия предметов действительности, результаты которого фиксируются в описании. Для получения значимых результатов необходимо многократное наблюдение.

Виды:

  • непосредственное наблюдение, которое осуществляется без применения технических средств;
  • опосредованное наблюдение — с использованием технических устройств.

Измерения[править | править исходный текст]

Измерение — это определение количественных значений, свойств объекта с использованием специальных технических устройств и единиц измерения.

Истина и предубеждение[править | править исходный текст]

В XX веке некоторые исследователи, в частности Людвик Флек (1896—1961), отметили необходимость более тщательной оценки результатов проверки опытом, поскольку полученный результат может оказаться под влиянием наших предубеждений. Следовательно, необходимо быть более точным при описании условий и результатов проведения эксперимента.

Выдающийся российский учёный, М. В. Ломоносов, придерживался мнения, что вера и наука дополняют друг друга:[5]

Правда и вера суть две сестры родные, дщери одного Всевышнего Родителя, никогда между собою в распрю притти не могут, разве кто из некоторого тщеславия и показания своего мудрования на них вражду всклеплет. А благоразумные и добрые люди должны рассматривать, нет ли какого способа к объяснению и отвращению мнимого между ними междоусобия.

Сейчас предположение о божественном вмешательстве автоматически выводит теорию, использовавшую такое предположение, за пределы науки, потому что такое предположение является в принципе непроверяемым и неопровергаемым (то есть противоречит критерию Поппера). В то же время связанные с религией личные убеждения учёных являются наиболее сложными для преодоления. В своей научной работе они вынуждены искать причины явлений исключительно в естественной области, без опоры на сверхъестественное. Как заметил академик Виталий Лазаревич Гинзбург[6],

Во всех известных мне случаях верующие физики и астрономы в своих научных работах ни словом не упоминают о Боге… Занимаясь конкретной научной деятельностью, верующий, по сути дела, забывает о Боге…

Даже без религии простая убеждённость в чём-либо на основе предыдущего опыта или знаний может изменять интерпретацию результатов наблюдения. Человек, имеющий определённое убеждение касательно некоего явления, часто склонен воспринимать факты в качестве доказательств своей веры уже только потому, что они ей прямо не противоречат. При анализе может оказаться, что предмет веры является лишь частным случаем более общих явлений (например, Корпускулярно-волновая теория считает частными случаями предшествовавшие представления о свете в форме частиц или волн) или вообще не связан с предметом наблюдения (например, концепция Теплорода в отношении температуры).

Не менее антинаучной может быть и идеологическая предубеждённость. Примером несовместимости подобной предубеждённости и научного метода является сессия ВАСХНИЛ 1948 года, в результате которой генетика в СССР оказалась под запретом до 1952 года и биологическая наука оказалась в застое почти на 20 лет[7]. Один из основных тезисов «мичуринских» биологов во главе с T. Д. Лысенко против генетики состоял в том, что основоположники классической теории наследственности (материалистической по своей сути) Мендель, Вейсман и Морган якобы вследствие своего идеализма создали неправильную идеалистическую теорию с элементами мистики вместо правильной материалистической[8]:

Как мы отмечали ранее, столкновение материалистического и идеалистического мировоззрений в биологической науке имело место на протяжении всей её истории… Для нас совершенно ясно, что основные положения менделизма-морганизма ложны. Они не отражают действительности живой природы и являют собой образец метафизики и идеализма… Истинную идеологическую подоплеку морганистской генетики хорошо (невзначай для наших морганистов) вскрыл физик Э. Шредингер. В своей книге «Что такое жизнь с точки зрения физики?», одобрительно излагая хромосомную вейсманистскую теорию, он пришел к ряду философских выводов. Вот основной из них: «…личная индивидуальная душа равна вездесущей, всепостигающей, вечной душе». Это свое главное заключение Шредингер считает «…наибольшим из того, что может дать биолог, пытающийся одним ударом доказать и существование бога и бессмертие души».

Критика научного метода[править | править исходный текст]

Ряд постпозитивистов в своих трудах во 2-й половине XX века сделали попытку применить критерии научного метода к самой науке на примере исторического материала реальных открытий. В результате появилась критика этого метода, которая, по мнению постпозитивистов, указывает на расхождение между методологией научного метода и реальным развитием научных идей. По их мнению, это свидетельствует об отсутствии полностью формализированного и достоверного метода, приводящего к более достоверному знанию, однозначной связи между принципами верификации/фальсификации и получением истинного знания.[9]

Основные авторы критики научного метода в современной философской литературе: Кун Т., Лакатос И., Фейерабенд П., Полани М., Лекторский В. А., Никифоров А. Л., Степин В. С., Порус В. Н. и т. д.

Хотя постпозитивисты отказываются от понятия истины, тем не менее, другие методологи [источник не указан 1124 дня] науки выражают надежду найти общие критерии, которые позволяли бы приблизиться к более адекватному описанию мира.

Явление парадигмы[править | править исходный текст]

Томас Кун считает, что научное знание развивается скачкообразно. Научная революция происходит тогда, когда учёные обнаруживают аномалии, которые невозможно объяснить при помощи старой парадигмы, в рамках которой до этого момента происходил научный прогресс. Развитие науки соответствует смене «психологических парадигм», взглядов на научную проблему, порождающих новые гипотезы и теории. Кун относит методы, которые влияют на переход от одной парадигмы к другой, в область социологии.[10]

Утончённый фальсификационизм[править | править исходный текст]

Имре Лакатос, развивая на основе идей фальсификационизма Поппера свой утончённый фальсификационизм, пришёл к выводу, что одной из существенных проблем развития науки как системы, опирающуюся на какие-то единые методы, — является существование гипотез ad hoc. Это один из механизмов, при помощи которого преодолеваются противоречия между теорией и экспериментом. Из-за этих гипотез, которые фактически являются частью теории, временно выводятся из-под критики и становится невозможным опровержение таких теорий, так как противоречия теории и эксперимента объясняются гипотезой ad hoc и не опровергают теорию. С помощью этих гипотез становится невозможным полное опровержение ни одной теории. Возможно говорить только о временно́м сдвиге проблем: либо прогрессивном, либо регрессивном.

Догматический фальсификационист, в соответствии со своими правилами, должен отнести даже самые значительные научные теории к метафизике, где нет места рациональной дискуссии — если исходить из критериев рациональности, сводящихся к доказательствам и опровержениям, — поскольку метафизические теории не являются ни доказуемыми, ни опровержимыми. Таким образом, критерий демаркации догматического фальсификациониста оказывается в высшей степени антитеоретическим.[11]

Знание и неявное знание[править | править исходный текст]

Майкл Полани считает, что научное знание можно передать через формальные языки только частично, а оставшаяся часть будет составлять личностное или неявное знание учёного, которое принципиально непередаваемо. Ученый, постепенно погружаясь в науку, принимает некоторые правила науки некритично. Эти некритично принятые и формально непередаваемые правила (часто включают навыки, умения и культуру) и составляют неявное знание. Ввиду того, что формализировать и передать неявное знание невозможно, невозможно и сравнение этого знания. Вследствие чего в науке присутствует сравнение только формализованной части одной теории с формализированной частью другой теории.

Гносеологический анархизм[править | править исходный текст]

Пауль Фейерабенд считает, что единственным принципом, не создающим препятствий прогрессу, является принцип «допустимо всё». Ни одна теория никогда не согласуется со всеми известными в своей области фактами. Любой факт теоретически нагружен, то есть зависит от теории, в рамках которой он рассматривается. Поэтому теорию нельзя сравнивать с фактами. Также теории нельзя сравнивать и друг с другом из-за того, что понятия в разных теориях имеют разное содержание.

Открытия без применения научного метода[править | править исходный текст]

В истории науки есть многочисленные примеры того, как одни идеи сменяют другие без видимых рациональных оснований: так, гелиоцентрическая система сменила геоцентрическую,[12] теория кислородного горения сменила теорию теплорода,[13] классическая механика Ньютона сменила аристотелевскую механику[11]. Обоснование Коперником гелиоцентрической системы является одним из наиболее ярких примеров: первоначально новая теория, в которой планеты обращались вокруг Солнца, давала значительно худшие астрономические предсказания, чем господствовавшая до неё теория эпициклов. Поэтому Коперник был вынужден апеллировать к простоте и внутренней красоте новой теории:

В центре всего, в покое, находится Солнце. В этом прекраснейшем храме кто может найти этому светильнику лучшее место, чем то, из которого он может освещать всё одновременно?[14]

Неспособность претендовать на абсолютную истинность[править | править исходный текст]

В христианском богословии и в некоторых направлениях философии научное знание рассматривается как всегда ограниченное, условное и потому никогда не способное претендовать на абсолютную истинность[15]. Это подтверждается процессом смены научных теорий, описанным выше. В то же время многие философские системы вообще выражают сомнения в существовании абсолютных истин, предлагая другие теории истины и знания, а успех науки в объяснении мира рассматривается большинством философов как признак её относительной истинности, что бы это ни обозначало[16].

См. также[править | править исходный текст]

Wikiquote-logo.svg
В Викицитатнике есть страница по теме
Научный метод

Примечания[править | править исходный текст]

  1. Исаак Ньютон (1687, 1713, 1726). «Математические начала натуральной философии», третья часть «Система мира». Перевод с латинского и примечания А. Н. Крылова. М., Наука, 1989 г., 688 с ISBN 5-02-000747-1
  2. scientific method - Definition from the Merriam-Webster Online Dictionary (англ.). Мэрриэм-Вебстер. merriam-webster.com. — Определение из словаря Мэрриэм-Вебстер. Проверено 15 февраля 2008. Архивировано из первоисточника 24 августа 2011.
  3. Добрынина В. И. и др. Философия XX века. Учебное пособие. — М.: ЦИНО общества «Знание» России, 1997. — С. 288. — ISBN 5-7646-0013-8
  4. Discorsi e dimonstrazioni mathematiche intorno à due nuove scienze attenenti alla meccanica ed movimenti locali. Трактат «Беседы и математические обоснования двух новых наук, касающихся механики и законов падения» в английском переводе.
  5. Ломоносов М. В. Явление Венеры на Солнце, наблюденное в Санктпетербургской Императорской Академии наук майя 26 дня 1761 года // Ломоносов М. В. Полное собрание сочинений. — М. ; Л., 1955. — Т. 4. — с. 368
  6. Гинзбург В. Л. Вера в Бога несовместима с научным мышлением // Поиск. — 1998. — № 29—30.
  7. Взлет и падение Бошьяна // Александров В. Я. Трудные годы советской биологии:Записки современника. — СПб.: Изд. "Наука", 1993 г.
  8. О положении в биологической науке: стенографический отчет сессии ВАСХНИИЛ. 1948.
  9. В. Н. Порус Принципы рациональной критики
  10. Т.Кун «Логика и методология науки. Структура научных революций»
  11. 1 2 И.Лакатос «Фальсификация и методология научно-исследовательских программ» глава 2. Фаллибизм против фальсификационизма
  12. Пол Фейерабенд «Против метода. Очерк анархистской теории познания.»
  13. Т.Кун «Логика и методология науки. Структура научных революций» глава VI. Аномалия и возникновение научных открытий
  14. (англ.) Nicholas Copernicus. De revolutionibus orbium coelestium, 1543
  15. Осипов А. И. Путь разума в поисках истины
  16. Chakravartty, Anjan. Scientific Realism (англ.) // The Stanford Encyclopedia of Philosophy (Summer 2011 Edition), Edward N. Zalta (ed.). — 2011.

Ссылки[править | править исходный текст]

Классические работы[править | править исходный текст]