Нейтрофильные гранулоциты

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Нейтрофильный гранулоцит

Neuthrophil.png

Ткань: соединительная
История дифференцировки клетки: ЗиготаБластомерЭмбриобластЭпибластКлетка первичной мезодермыПрегемангиобластГемангиобластГемоцитобласт

Общий миелоидный прародительНейтрофильный промиелоцитНейтрофильный миелоцитНейтрофильный метамиелоцитПалочкоядерный нейтрофилСегментоядерный нейтрофил (нейтрофильный гранулоцит)

Нейтрофильные гранулоциты или нейтрофилы, сегментоядерные нейтрофилы, нейтрофильные лейкоциты — подвид гранулоцитарных лейкоцитов, названный нейтрофилами за то, что при окраске по Романовскому они интенсивно окрашиваются как кислым красителем эозином, так и основными красителями, в отличие от эозинофилов, окрашиваемых только эозином, и от базофилов, окрашиваемых только основными красителями.

Зрелые нейтрофилы имеют сегментированное ядро, то есть относятся к полиморфноядерным лейкоцитам, или полиморфонуклеарам. Они являются классическими фагоцитами: имеют адгезивность, подвижность, способность к хемостаксису, а так же способность захватывать частицы (например, бактерии).

Зрелые сегментоядерные нейтрофилы в норме являются основным видом лейкоцитов, циркулирующих в крови человека, составляя от 47 % до 72 % общего количества лейкоцитов крови. Ещё 1—5 % в норме составляют юные, функционально незрелые нейтрофилы, имеющие палочкообразное сплошное ядро и не имеющие характерной для зрелых нейтрофилов сегментации ядра — так называемые палочкоядерные нейтрофилы.

Нейтрофилы способны к активному амёбоидному движению, к экстравазации (эмиграции за пределы кровеносных сосудов), и к хемотаксису (преимущественному движению в направлении мест воспаления или повреждения тканей).

Нейтрофилы способны к фагоцитозу, причём являются микрофагами, то есть способны поглощать лишь относительно небольшие чужеродные частицы или клетки. После фагоцитирования чужеродных частиц нейтрофилы обычно погибают, высвобождая большое количество биологически активных веществ, повреждающих бактерии и грибы, усиливающих воспаление и хемотаксис иммунных клеток в очаг. Нейтрофилы содержат большое количество миелопероксидазы, фермента, который способен окислять анион хлора до гипохлорита — сильного антибактериального агента. Миелопероксидаза как гем-содержащий белок имеет зеленоватый цвет, что определяет зеленоватый оттенок самих нейтрофилов, цвет гноя и некоторых других выделений, богатых нейтрофилами. Погибшие нейтрофилы вместе с клеточным детритом из разрушенных воспалением тканей и гноеродными микроорганизмами, послужившими причиной воспаления, формируют массу, известную как гной.

Повышение процента нейтрофилов в крови называется относительным нейтрофилезом, или относительным нейтрофильным лейкоцитозом. Повышение абсолютного числа нейтрофилов в крови называется абсолютным нейтрофилезом. Снижение процента нейтрофилов в крови называется относительной нейтропенией. Снижение абсолютного числа нейтрофилов в крови обозначается как абсолютная нейтропения.

Нейтрофилы играют очень важную роль в защите организма от бактериальных и грибковых инфекций, и сравнительно меньшую — в защите от вирусных инфекций. В противоопухолевой или антигельминтной защите нейтрофилы практически не играют роли.

В 2004 был открыт важный механизм, посредством которого нейтрофилы осуществляют защитные функции, названные нетозом (от англ. NETosis (от NET - Neutrophil Extracellular Trap))[1]. Нетоз является третьим основным клеточным типом смерти нейтрофилов наравне с апоптозом и некрозом, при нетозе нейтрофил проходит стадии деконденсации хроматина, наработки ROS (Reactive Oxigen Species), дегрануляции; затем следует выброс ДНК-сети, связанной с ROS, гистонами, миелопероксидазой и другими молекулами, повреждающими патоген. Патогены, а именно бактерии, грибы, паразиты и вирусы "запутываются" в сетях и гибнут[2]. Нейтрофильные ДНК-ловушки связаны с патогенезом различных заболеваний, таких как сепсис, ревматоидный артрит, тромбоз, волчанка и другие аутоиммунные заболевания[3]. Также показано, что другие клетки крови, такие как моноциты, эозинофилы, базофилы также имеют подобный механизм, называемый этозом (от англ. ETosis (от ET - Extracellular Trap))[4].

Нейтрофильный ответ (инфильтрация очага воспаления нейтрофилами, повышение числа нейтрофилов в крови, сдвиг лейкоцитарной формулы влево с увеличением процента «юных» форм, указывающий на усиление продукции нейтрофилов костным мозгом) — самый первый ответ на бактериальные и многие другие инфекции. Нейтрофильный ответ при острых воспалениях и инфекциях всегда предшествует более специфическому лимфоцитарному. При хронических воспалениях и инфекциях роль нейтрофилов незначительна и преобладает лимфоцитарный ответ (инфильтрация очага воспаления лимфоцитами, абсолютный или относительный лимфоцитоз в крови).

Примечания[править | править исходный текст]

  1. Science 303, 1532 (2004); Volker Brinkmann et al. Neutrophil Extracellular Traps Kill Bacteri]
  2. Neutrophils Recruited to Sites of Infection Protect from Virus Challenge by Releasing Neutrophil Extracellular Traps, Cell Host & Microbe 13, 169–180, February 13, 2013, Craig N. Jenne et al
  3. Extracellular histones are major mediators of death in sepsis. Jun Xu et al, Nat Med. 2009 November ; 15(11): 1318–1321.
  4. Science Signaling 1 (21), pe25. Florian Wartha and Birgitta Henriques-Normark. ETosis: A Novel Cell Death Pathway

Ссылки[править | править исходный текст]