Необходимое и достаточное условия
Необходимое условие и достаточное условие — виды условий, логически связанных с некоторым суждением. Различие этих условий используется в логике и математике для обозначения видов связи суждений.
Содержание
Необходимое условие[править | править код]
Если импликация является абсолютно истинным высказыванием, то истинность высказывания является необходимым условием для истинности высказывания [1][2].
Необходимыми условиями истинности утверждения А называются условия, без соблюдения которых А не может быть истинным.
Суждение P является необходимым условием суждения X, когда из (истинности) X следует (истинность) P. То есть, если P ложно, то заведомо ложно и X.
Для суждений X типа «объект принадлежит классу M» такое суждение P называется свойством (элементов) M.
Достаточное условие[править | править код]
Если импликация является абсолютно истинным высказыванием, то истинность высказывания является достаточным условием для истинности высказывания [1][2].
Достаточными называются такие условия, при наличии (выполнении, соблюдении) которых утверждение А является истинным.
Суждение P является достаточным условием суждения X, когда из (истинности) P следует (истинность) X, то есть в случае истинности P проверять X уже не требуется.
Для суждений X типа «объект принадлежит классу M» такое суждение P называется признаком принадлежности классу M.
Необходимое и достаточное условие[править | править код]
Суждение K является необходимым и достаточным условием суждения X, когда K является как необходимым условием X, так и достаточным. В этом случае говорят ещё что K и X равносильны, или эквивалентны, и обозначают или .
Это следует из тождественно истинной формулы, связывающей импликацию и операцию эквиваленции[3]:
Для суждений X типа «объект принадлежит классу M» такое суждение K называется критерием принадлежности классу M.
Пример[править | править код]
Суждение X: «Вася получает стипендию».
Необходимое условие P: «Вася — учащийся».
Достаточное условие Q: «Вася учится в вузе без троек».
Из того, что Вася — учащийся, ещё не следует, что он получает стипендию. Но это условие необходимо, то есть если Вася не учащийся, то он заведомо не получает стипендии.
Если же Вася учится в вузе без троек, то он заведомо получает стипендию. Тем не менее, студент Вася может получать стипендию (в виде пособия), если он учится с тройками, но, например, имеет хроническое заболевание.
В импликации A → B
A — это достаточное условие для B
B — это необходимое условие для A
См. также[править | править код]
Ссылки[править | править код]
- Видео о необходимом и достаточном условиях
Примечания[править | править код]
- ↑ 1 2 Эдельман, 1975, с. 30.
- ↑ 1 2 Гиндикин, 1972, с. 21.
- ↑ Эдельман, 1975, с. 26.
Литература[править | править код]
- Эдельман С.Л. Математическая логика. — М.: Высшая школа, 1975. — 176 с.
- Гиндикин С.Г. Алгебра логики в задачах. — М.: Наука, 1972. — 288 с.
В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники. Эта отметка установлена 14 мая 2011 года. |
![]() |
Это заготовка статьи по логике. |