Непрерывное равномерное распределение

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Непрерывное равномерное распределение
Плотность вероятности
Плотность непрерывного равномерного распределения
Функция распределения
Функция распределения непрерывного равномерного распределения
Обозначение ,
Параметры , коэффициент сдвига, коэффициент масштаба
Носитель
Плотность вероятности
Функция распределения
Математическое ожидание
Медиана
Мода любое число из отрезка
Дисперсия
Коэффициент асимметрии
Коэффициент эксцесса
Информационная энтропия
Производящая функция моментов
Характеристическая функция

Непреры́вное равноме́рное распределе́ние — в теории вероятностей — распределение случайной вещественной величины, принимающей значения, принадлежащие интервалу [a, b], характеризующееся тем, что плотность вероятности на этом интервале постоянна.

Определение[править | править вики-текст]

Говорят, что случайная величина имеет непрерывное равномерное распределение на отрезке , где , если её плотность имеет вид:

Пишут: . Иногда значения плотности в граничных точках и меняют на другие, например или . Так как интеграл Лебега от плотности не зависит от поведения последней на множествах меры нуль, эти вариации не влияют на вычисления связанных с этим распределением вероятностей.

Функция распределения[править | править вики-текст]

Интегрируя определённую выше плотность, получаем:

Так как плотность равномерного распределения разрывна в граничных точках отрезка , то функция распределения в этих точках не является дифференцируемой. В остальных точках справедливо стандартное равенство:

.

Производящая функция моментов[править | править вики-текст]

Простым интегрированием получаем производящую функцию моментов:

,

откуда находим все интересующие моменты непрерывного равномерного распределения:

,
,
.

Вообще,

.

Стандартное равномерное распределение[править | править вики-текст]

Если и , то есть , то такое непрерывное равномерное распределение называют стандартным.

Имеет место элементарное утверждение:

Если случайная величина и , то .

Таким образом, имея генератор случайной выборки из стандартного непрерывного равномерного распределения, легко построить генератор выборки любого непрерывного равномерного распределения.

Более того, имея такой генератор и зная функцию обратную к функции распределения случайной величины, можно построить генератор выборки любого непрерывного распределения (не обязательно равномерного) с помощью метода обратного преобразования. Поэтому стандартно равномерно распределённые случайные величины иногда называют базовыми случайными величинами.

Существуют также частные преобразования, позволяющие на основе равномерного распределения получить случайные распределения другого вида. Так, например, для получения нормального распределения служит преобразование Бокса — Мюллера.

См. также[править | править вики-текст]


Bvn-small.png п о р       Вероятностные распределения
Одномерные Многомерные
Дискретные: Бернулли | Биномиальное | Геометрическое | Гипергеометрическое | Логарифмическое | Отрицательное биномиальное | Пуассона | Дискретное равномерное Мультиномиальное
Абсолютно непрерывные: Бета | Вейбулла | Гамма | Гиперэкспоненциальное | Распределение Гомпертца | Колмогорова | Коши | Лапласа | Логнормальное | Нормальное (Гаусса) | Логистическое | Накагами | Парето | Пирсона | Полукруговое | Непрерывное равномерное | Райса | Рэлея | Стьюдента | Трейси — Видома | Фишера | Хи-квадрат | Экспоненциальное | Variance-gamma Многомерное нормальное | Копула