Неравенство Коши — Буняковского

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Неравенство Коши́ — Буняко́вского связывает норму и скалярное произведение векторов в евклидовом или гильбертовом пространстве. Это неравенство эквивалентно неравенству треугольника для нормы.

Неравенство Коши — Буняковского иногда, особенно в иностранной литературе, называют неравенством Шварца и неравенством Коши — Буняковского — Шварца («неравенство КБШ»), хотя работы Шварца на эту тему появились только спустя 25 лет после работ Буняковского[1]. Конечномерный случай этого неравенства называется неравенством Коши и был доказан Коши в 1821 году.

Формулировка[править | править вики-текст]

Пусть дано линейное пространство со скалярным произведением . Пусть  — норма, порождённая скалярным произведением, то есть . Тогда для любых имеем:

причём равенство достигается тогда и только тогда, когда векторы и пропорциональны (коллинеарны).

Комментарии[править | править вики-текст]

В конечномерном случае можно заметить, что , где  — площадь параллелограмма, натянутого на векторы и .

В общем случае:

Примеры[править | править вики-текст]

где обозначает комплексное сопряжение .

  • В пространстве случайных величин с конечным вторым моментом неравенство Коши — Буняковского имеет вид:
где обозначает ковариацию, а  — дисперсию.

Доказательство[править | править вики-текст]

  • Если то верно следующее

Значит, дискриминант многочлена неположительный, то есть

Следовательно,

  • Если то представим скалярное произведение в тригонометрическом виде

Определим вектор Тогда

и

К скалярному произведению применим результат первого пункта доказательства.

Примечания[править | править вики-текст]

  1. Bounjakowsky W. «Mémoires de l’Académie des sciences de St-Pétersbourg. 7 série», 1859, t. 1, № 9.