Неравенство Чебышёва для сумм

Материал из Википедии — свободной энциклопедии
(перенаправлено с «Неравенство Чебышева для сумм»)
Перейти к: навигация, поиск

Неравенство Чебышёва для сумм, носящее имя Пафнутия Львовича Чебышёва, утверждает, что если

и

то

Аналогично, если

и

то

Доказательство[править | править вики-текст]

Неравенство Чебышёва для сумм легко выводится из перестановочного неравенства:

Предположим, что

и

В виду перестановочного неравенства выражение

является максимально возможным значением скалярного произведения рассматриваемых последовательностей. Суммируя неравенства

получаем

или, разделив на :

Непрерывный случай[править | править вики-текст]

Существует также непрерывный аналог неравенства Чебышёва для сумм:

Если f(x) и g(x) — это вещественные интегрируемые на [0,1] функции, возрастающие или убывающие одновременно, то