Обратная теорема

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску

Обратная теорема или обратное утверждение к данной теореме — это утверждение, в котором условие исходной теоремы (прямого утверждения) поставлено заключением, а заключение — условием.

Каждая теорема может быть выражена в форме импликации , в которой посылка является условием теоремы, а следствие является заключением теоремы. Тогда теорема, записанная в виде является обратной к ней[1].

Часто используется более общее определение обратной теоремы: если является прямой теоремой, то обратной называется не только теорема , но и теоремы , [2].

Вообще говоря, обратная теорема может не быть истинной, даже если прямая теорема верна. Даже если обратное утверждение истинно, то его доказательство может быть гораздо сложнее доказательства прямого. Например, теорема о четырёх вершинах была доказана в 1912 году, а её обратная только в 1998 году.

Свойства[править | править код]

  • Прямая теорема эквивалентна теореме, противоположной обратной:
  • Обратная теорема эквивалентна противоположной прямой: [3]

Примеры[править | править код]

Если в треугольнике со сторонами длиной , и угол, противолежащий стороне , прямой, то .

Обратная к этой теореме появляется в «Началах» Евклида (книга I, предложение 48), может быть сформулирована следующим образом:

Если в треугольнике со сторонами длиной , и выполняется , то угол, противолежащий стороне , прямой.

См. также[править | править код]

Примечания[править | править код]

Литература[править | править код]

  • Эдельман С.Л. Математическая логика. — М.: Высшая школа, 1975. — 176 с.
  • Гиндикин С.Г. Алгебра логики в задачах. — М.: Наука, 1972. — 288 с.