Эта статья входит в число хороших статей

Окислительное декарбоксилирование пирувата

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Окисли́тельное декарбоксили́рование пирува́та — биохимический процесс, заключающийся в отщеплении одной молекулы углекислого газа (СО2) от молекулы пирувата и присоединения к декарбоксилированному пирувату кофермента А (СоА) с образованием ацетил-СоА; является промежуточным этапом между гликолизом и циклом трикарбоновых кислот. Декарбоксилирование пирувата осуществляет сложный пируватдегидрогеназный комплекс (PDH), включающий в себя 3 фермента и 2 вспомогательных белка, а для его функционирования необходимы 5 кофакторов (СоА, NAD+, тиаминпирофосфат (ТРР), FAD и липоевая кислота (липоат)). Суммарное уравнение окислительного декарбоксилирования пирувата таково[1]:

Pyruvate decarboxylation.svg

У эукариот пируватдегидрогеназный комплекс локализован в митохондриях, у бактерий — в цитозоле. Образующийся в результате ацетил-СоА далее вовлекается в цикл Кребса[1].

Окислительное декарбоксилирование пирувата — необратимый процесс. Образующийся в ходе этого процесса NADH впоследствии отдаёт гидридный ион-) в дыхательную цепь, в которой при аэробном дыхании конечным акцептором электронов является кислород, а при анаэробном — другие окисленные соединения (например, сульфат, нитрат). Перенос электронов с NADH на кислород даёт 2,5 молекулы ATP на пару электронов. Необратимость реакции, осуществляемой пируватдегидрогеназным комплексом, была показана в исследованиях с применением радиоактивных изотопов: комплекс не может обратно присоединить меченый СО2 к ацетил-СоА с образованием пирувата[2].

Помимо окислительного, существует неокислительное декарбоксилирование пирувата до ацетальдегида (и далее до этанола) и СО2. Этот процесс осуществляется ферментом пируватдекарбоксилазой[en], к нему способны многие растения, дрожжи и некоторые бактерии[3].

Коферменты[править | править вики-текст]

Некоторые коферменты PDH

Комбинированное дегидрирование и декарбоксилирование пирувата до ацильной группы[en], которая в дальнейшем войдёт в ацетил-СоА, осуществляется тремя различными ферментами, для функционирования которых необходимы 5 различных коферментов или простетических групп: тиаминпирофосфат (ТРР), FAD, кофермент А (СоА), NAD и липоат. Четыре из них являются производными витаминов: тиамина, или витамина В1 (ТРР), рибофлавина, или витамина В2 (FAD), ниацина, или витамина РР (NAD) и пантотеновой кислоты, или витамин В5 (СоА)[4].

FAD и NAD являются переносчиками электронов, а ТРР известен также как кофермент пируватдекарбоксилазы[en], участвующей в брожении[4].

Кофермент А имеет активную тиольную группу (—SH), которая имеет критическое значение для функционирования СоА в качестве переносчика ацильной группы в ряде метаболических реакций. Ацильные группы при этом ковалентно связываются с тиольной группой, образуя тиоэфиры. Из-за их относительно высокой стандартной свободной энергии гидролиза тиоэфиры обладают высокой способностью к переносу ацильных групп к различным молекулам-акцепторам. Поэтому ацетил-СоА иногда также называют «активированной уксусной кислотой»[4][5].

Пятый кофактор пируватдегидрогеназного комплекса, остаток липоевой кислоты — липоат, имеет две тиольные группы, которые могут подвергаться обратимому окислению с образованием дисульфидной связи (—S—S—), подобно тому, как это происходит между двумя остатками аминокислоты цистеина в белке. Из-за своей способности подвергаться окислению и восстановлению липоат может служить в качестве переносчика как электронов (или H+), так и ацильных групп[4].

Пируватдегидрогеназный комплекс[править | править вики-текст]

Пируватдегидрогеназный комплекс (PDH)

Трёхмерная модель PDH
Схематическое изображение PDH с указанием ферментов (Е1, Е2, Е3). Зелёным цветом выделена коровая часть, синим — липоильный домен Е2, который продолжается вперёд до соприкосновения с активными центрами молекул Е1 (жёлтый цвет). С кором[en] также связано несколько субъединиц Е3 (красный), и, раскачиваясь, «рука» Е2 может достать до их активных центров

Пируватдегидрогеназный комплекс (PDH) включает 3 фермента: пируватдегидрогеназу[en]1), дигидролипоилтрансацетилазу[en]2) и дигидролипоилдегидрогеназу[en]3). Каждый из этих ферментов присутствует в комплексе во множестве копий. Количество копий каждого фермента, а следовательно, и размер комплекса варьирует среди различных видов.

Комплекс PDH млекопитающих достигает около 50 нм в диаметре, что более чем в 5 раз превышает диаметр целой рибосомы; эти комплексы достаточно велики, чтобы быть различимыми в электронный микроскоп. В PDH коровы входят 60 идентичных копий Е2, которые формируют пентагональный додекаэдр (коровая часть[en] комплекса) диаметром около 25 нм.

В кор PDH у бактерии Escherichia coli входит 24 копии Е2. К Е2 присоединяется простетическая группа липоат (остаток альфа-липоевой кислоты) с аминокислотой лизином, которая связывается амидной связью с ε-аминогруппе остатка лизина, входящего в состав Е2. Е2 состоит из трёх функционально различных доменов: аминотерминального липоильного домена, содержащего остаток лизина, связывающийся с липоатом; центрального Е1- и Е3-связывающего домена; внутреннего корового ацилтрансферазного домена, содержащего активные центры ацилтрансферазы. У дрожжей в PDH имеется единственный липоильный домен, у млекопитающих — два, а у E. coli — три. Домены Е2 связываются линкерными последовательностями, состоящими из 20—30 аминокислотных остатков, причём в них остатки аланина и пролина перемежаются с заряженными аминокислотыми остатками[6].

С активным центром Е1 связывается ТРР, а с активным центром Е3 — FAD. Также в состав комплекса PDH входят два регуляторных белка — протеинкиназа и фосфопротеинфосфатаза[en]. Такая основная структура из Е123 оставалась консервативной в ходе эволюции. Комплексы такого устройства принимают участие и в других реакциях, например, окислении α-кетоглутарата в ходе цикла Кребса и окислении α-кетокислот, образующихся при катаболической утилизации разветвлённых аминокислот: валина, изолейцина, лейцина. У изученных видов Е3 PDH идентичен Е3 двух вышеупомянутых комплексов. Примечательное сходство структур белков, кофакторов и механизмов реакций, осуществляемых этими комплексами, свидетельствует об общности их происхождения[1]. При прикреплении липоата к лизину Е2 образуется длинная, гибкая «рука», которая может перемещаться с активного центра Е1 в активные центры Е2 и Е3, то есть на расстояния предположительно 5 нм и более[7].

Механизм[править | править вики-текст]

Окислительное декарбоксилирование пирувата включает несколько стадий:

  • Стадия 1 идентична пируватдекарбоксилазной реакции. Первый атом углерода (С-1) пирувата уходит в виде СО2, а С-2, в пирувате находящийся в альдегидной форме, прикрепляется к ТРР в виде гидроксиэтильной группы (—СНОН—СН3). Первая стадия является наиболее медленной и поэтому ограничивает скорость всего процесса. Кроме того, на этом этапе комплекс PDH проявляет свою субстратную специфичность. Эта реакция осуществляется пируватдегидрогеназой (Е1).
  • Стадия 2. Гидроксиэтильная группа окисляется до карбоновой кислоты (ацетата). Два электрона, освобождаемых при этой реакции, идут на восстановление связи —S—S— липоильной группы Е2 до двух тиольных (—SH) групп.
  • Стадия 3. Ацетильный остаток, образующийся в ходе окислительно-восстановительной реакции на стадии 2, сначала связывается тиоэфирной связью с липоильной —SH-группой, а затем переносится на СоА с образованием ацетил-СоА. Таким образом, энергия окисления идёт на образование высокоэнергетического тиоэфира ацетата. Стадии 2 и 3 катализируются дигидролипоилтрансацетилазой (Е2).
  • Стадия 4 и стадия 5 катализируются дигидролипоилдегидрогеназой (Е3). В ходе этих двух последних реакций восстановленный липоиллизин снова возвращается в окисленную форму, который в дальнейшем может участвовать в следующем цикле окислительного декарбоксилирования пирувата. Электроны, изначально принадлежавшие гидроксиэтильной группе, при этом переносятся с липоиллизина сначала на FAD с образованием FADH2, а потом на NAD+ с образованием NADH + H+[8].
Схема окислительного декарбоксилирования пирувата

Центральную роль в реакции, осуществляемой комплексом PDH, играют липоиллизиновые «руки» Е2, способные «раскачиваться» и забирать два электрона от Е1, а также ацетильную группу, образовавшуюся из пирувата, и доставлять электроны к Е3. Все эти ферменты и коферменты собраны в комплекс, благодаря чему промежуточные соединения могут вступать в необходимые реакции быстро и не диффундируя с поверхности ферментного комплекса. За счёт этого промежуточные соединения не покидают комплекса, и поддерживается очень высокая локальная концентрация субстрата Е2. Это также предотвращает перехватывание активированной ацетильной группы другими ферментами, использующими её в качестве субстрата[8].

Органические соединения, содержащие мышьяк, являются ингибиторами PDH, поскольку взаимодействуют с восстановленными в ходе окислительного декарбоксилирования пирувата тиольными группами липоильной группы Е2 и блокируют их нормальную работу[9].

Регуляция[править | править вики-текст]

У млекопитающих PDH сильно подавляется ATP, а также продуктами реакции: ацетил-СоА и NADH. Аллостерическое подавление окисления пирувата значительно усиливается в присутствии длинноцепочечных жирных кислот. AMP, СоА и NAD+, накапливающиеся тогда, когда в цикл Кребса поступает слишком мало ацетата, аллостерически активируют комплекс PDH. Таким образом, ферментный комплекс подавляется, когда имеется достаточно ацетил-СоА или сырья (жирные кислоты) для осуществления альтернативных путей образования ацетил-СоА, а отношения [ATP]/[ADP] и [NADH]/[NAD+] достаточно велики. Напротив, при большой потребности в энергии и необходимости большего количества ацетил-КоА для функционирования цикла Кребса PDH активируется[10].

У млекопитающих к этим аллостерическим механизмам добавляется второй уровень регуляции: ковалентная модификация белка. Комплекс PDH подавляется обратимым фосфорилированием по специфическим остаткам серина на одной из двух субъединиц E1. Ранее отмечалось, что, помимо субъединиц E1, E2 и E3 у млекопитающих в комплекс PDH входят два регуляторных белка, единственным назначением которых является регуляция активности комплекса. Специфичная протеинкиназа фосфорилирует и тем самым инактивирует E1, а специфичная фосфопротеинфосфатаза удаляет фосфатные группы путём гидролиза и тем самым активирует E1. Киназа аллостерически активируется ATP: когда концентрация ATP велика (что свидетельствует о достаточном количестве энергии в клетке), комплекс PDH инактивируется фосфорилированием E1. Когда [ATP] понижена, активность киназы снижается, и фосфатаза убирает фосфатные группы с E1, активируя комплекс[11].

Комплекс PDH растений, располагающийся в матриксе митохондрий и пластидах, подавляется продуктами его активности — NADH и ацетил-СоА. Растительный митохондриальный фермент также регулируется обратимым фосфорилированием: пируват подавляет киназу, активируя PDH, а NH4+ стимулирует киназу и инактивирует комплекс. У E. coli PDH регулируется аллостерически по схожему с млекопитающими механизму, однако, по-видимому, не регулируется фосфорилированием[11].

Клиническое значение[править | править вики-текст]

Четыре витамина (тиамин, рибофлавин, ниацин, пантотеновая кислота), из которых образуются коферменты PDH, обязательно должны присутствовать в рационе человека[4]. Кроме того, мутации генов, кодирующих субъединицы PDH, а также недостаток тиамина в пище могут иметь очень серьёзные последствия. Животные, испытывающие недостаток тиамина, не могут нормально окислять пируват. Особенно это важно для мозга, который обычно получает энергию при аэробном окислении глюкозы, а этот процесс обязательно включает окисление пирувата.

Бери-бери — заболевание, развивающееся при недостатке тиамина — характеризуется расстройством функций нервной системы. Эта болезнь обычно встречается в популяциях людей, чей рацион состоит в основном из белого (очищенного) риса, лишённого шелухи, в которой содержится большая часть тиамина риса. Недостаточность тиамина может также развиться у людей, постоянно употребляющих алкоголь, так как большая часть получаемой ими энергии приходится на «пустые калории» очищенного спирта, лишённого витаминов. Повышенное содержание пирувата в крови часто является индикатором нарушений в окислении пирувата из-за одной из вышеперечисленных причин[12].

Другие пути преобразования пирувата[править | править вики-текст]

У некоторых микроорганизмов преобразование пирувата в ацетил-СоА (или другие продукты) может осуществляться и другими способами, помимо вышеописанного (комплекс PDH используется аэробами). Такими преобразованиями могут быть:

Примечания[править | править вики-текст]

  1. 1 2 3 Nelson, Cox, 2008, p. 616
  2. Nelson, Cox, 2008, p. 616—617
  3. van Zyl L. J., Schubert W. D., Tuffin M. I., Cowan D. A. Structure and functional characterization of pyruvate decarboxylase from Gluconacetobacter diazotrophicus. (англ.) // BMC structural biology. — 2014. — Vol. 14. — № 1. — P. 21. — DOI:10.1186/s12900-014-0021-1 — PMID 25369873. исправить
  4. 1 2 3 4 5 Nelson, Cox, 2008, p. 617
  5. Нетрусов, Котова, 2012, с. 123
  6. Nelson, Cox, 2008, p. 618
  7. Nelson, Cox, 2008, p. 618—619
  8. 1 2 Nelson, Cox, 2008, p. 619
  9. Pyruvate Dehydrogenase & Krebs Cycle.
  10. Nelson, Cox, 2008, p. 635—636
  11. 1 2 Nelson, Cox, 2008, p. 636
  12. Nelson, Cox, 2008, p. 620
  13. Нетрусов, Котова, 2012, с. 123, 128

Литература[править | править вики-текст]

  • David L. Nelson, Michael M. Cox. Lehninger Principles of biochemistry. — Fifth edition. — New York: W. H. Freeman and company, 2008. — 1158 p. — ISBN 978-0-7167-7108-1.
  • David E. Metzler. Biochemistry: The Chemical Reactions of Living Cells.. — 2nd edition. — Academic Press, 2003. — Т. 2. — 1973 с. — ISBN 978-0-1249-2541-0.
  • Нетрусов А. И., Котова И. Б. Микробиология. — 4-е изд., перераб. и доп.. — М.: Издательский центр «Академия», 2012. — 384 с. — ISBN 978-5-7695-7979-0.