Оксид азота(II)

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Оксид азота(II)
Nitric-oxide-2D.png
Оксид азота(II)
Общие
Систематическое
наименование
Оксид азота(II)
Хим. формула NO
Физические свойства
Состояние бесцветный газ
Молярная масса 30,0061 г/моль
Плотность 0,00134 (газ)
Термические свойства
Т. плав. −163,6 °C
Т. кип. −151,7 °C
Энтальпия образования 81 кДж/моль
Химические свойства
Растворимость в воде 0,01 г/100 мл
Классификация
Рег. номер CAS [10102-43-9]
PubChem 145068
Рег. номер EINECS 233-271-0
SMILES
RTECS QX0525000
ChemSpider 127983
Приводятся данные для стандартных условий (25 °C, 100 кПа), если не указано иного.

Оксид азота(II) (мон(о)оксид азота, окись азота, нитрозил-радикал) NO — несолеобразующий оксид азота. В нормальных условиях он представляет собой бесцветный газ, плохо растворимый в воде. Сжижается с трудом[источник не указан 1225 дней]; в жидком и твёрдом виде имеет голубой цвет.

Наличие неспаренного электрона обусловливает склонность NO к образованию слабосвязанных димеров N2O2. Это непрочные соединения с ΔH° димеризации около 17 кДж/моль. Жидкий оксид азота(II) на 25 % состоит из молекул N2O2, а твёрдый целиком состоит из них.

Получение[править | править вики-текст]

Оксид азота(II) — единственный из оксидов азота, который можно получить непосредственно из свободных элементов соединением азота с кислородом при высоких температурах (1200—1300 °C) или в электрическом разряде. В природе он образуется в атмосфере при грозовых разрядах (тепловой эффект реакции −180,9 кДж):

\mathsf{N_2 + O_2 \rightarrow 2NO}

и тотчас же реагирует с кислородом:

\mathsf{2NO + O_2 \rightarrow 2NO_2.}

При понижении температуры оксид азота(II) разлагается на азот и кислород, но если температура падает резко, то не успевший разложиться оксид существует достаточно долго: при низкой температуре скорость распада невелика. Такое резкое охлаждение называется «закалкой» и используется при одном из способов получения азотной кислоты.

В лаборатории его обычно получают взаимодействием 30%-ной HNO3 с некоторыми металлами, например, с медью:

\mathsf{3Cu + 8HNO_3 \rightarrow 3Cu(NO_3)_2 + 2NO + 4H_2O.}

Более чистый, не загрязнённый примесями NO можно получить по реакциям:

\mathsf{FeCl_2 + NaNO_2 + 2HCl \rightarrow FeCl_3 + NaCl + NO + H_2O,}
\mathsf{2HNO_2 + 2HI \rightarrow 2NO + I_2 + 2H_2O.}

Промышленный способ основан на окислении аммиака при высокой температуре и давлении при участии Pt, Cr2O3 (как катализаторов):

\mathsf{4NH_3 + 5O_2 \rightarrow 4NO + 6H_2O.}

Химические свойства[править | править вики-текст]

При комнатной температуре и атмосферном давлении происходит окисление NO кислородом воздуха:

\mathsf{2NO + O_2 \rightarrow 2NO_2.}

Для NO характерны также реакции присоединения галогенов с образованием нитрозилгалогенидов, в этой реакции NO проявляет свойства восстановителя с образованием нитрозилхлорида:

\mathsf{2NO + Cl_2 \rightarrow 2NOCl.}

В присутствии более сильных восстановителей NO проявляет окислительные свойства:

\mathsf{2SO_2 + 2NO \rightarrow 2SO_3 + N_2.}

В воде NO мало растворим и с ней не реагирует, являясь несолеобразующим оксидом.

Физиологическое действие[править | править вики-текст]

Оксид азота (белый) в цитоплазме клеток хвойных пород деревьев через час после механического воздействия. Темно-зелёные круги в клетках — ядра, в некоторых из ядер, в свою очередь, заметны ядрышки (светло-зелёные).

Окись азота является одним из немногих известных газотрансмиттеров и, кроме того, является также химически высокореактивным свободным радикалом, способным выступать как в роли окислителя, так и в роли восстановителя. Окись азота является ключевым вторичным посредником в организмах позвоночных и играет важную роль в межклеточной и внутриклеточной передаче сигнала и, как следствие, во множестве биологических процессов.[1] Известно, что окись азота производится практически всеми типами живых организмов, от бактерий, грибов и растений, до клеток животных.[2]

Окись азота, первоначально известная под именем эндотелиального сосудорасширяющего фактора (химическая природа которого тогда ещё была не известна) синтезируется в организме из аргинина при участии кислорода и НАДФ ферментом синтазой оксида азота. Восстановление неорганических нитратов также может быть использовано для производства организмом эндогенной окиси азота. Эндотелий кровеносных сосудов использует окись азота в качестве сигнала окружающим гладкомышечным клеткам расслабиться, что приводит к вазодилатации и увеличению кровотока. Окись азота является высокореактивным свободным радикалом со временем жизни порядка нескольких секунд, но при этом обладает высокой способностью к проникновению сквозь биологические мембраны. Это делает окись азота идеальной сигнальной молекулой для кратковременного аутокринного (внутри клетки) или паракринного (между близко расположенными или соседними клетками) обмена сигналами.[3]

Независимо от активности синтазы оксида азота, существует и другой путь биосинтеза окиси азота, так называемый нитрат-нитрит-оксидный путь, состоящий в последовательном восстановлении пищевых нитратов и нитритов, получаемых из растительной пищи.[4] Было показано, что богатые нитратами овощи, в особенности листовая зелень, такая, как шпинат и руккола, а также свёкла, способны повышать уровень эндогенной окиси азота и обеспечивать защиту миокарда от ишемии, а также снижать артериальное давление у лиц с предрасположенностью к артериальной гипертензии или начинающимся развитием АГ.[5][6] Для того, чтобы организм мог производить окись азота из нитратов пищи по нитрат-нитрит-оксидному пути, сначала обязательно должно произойти восстановление нитратов до нитритов с помощью сапрофитных бактерий (бактерий-комменсалов), которые обитают во рту.[7] Мониторинг содержания окиси азота в слюне позволяет обнаружить биотрансформацию растительных нитратов в нитриты и окись азота. Повышение уровня окиси азота в слюне наблюдается при диетах, богатых листовой зеленью. В свою очередь, листовая зелень — часто важнейший компонент многих антигипертензивных и «сердечных» диет, разработанных для лечения гипертонической болезни, ишемической болезни сердца, сердечной недостаточности.[8]

Выработка окиси азота повышена у людей, живущих в горах, особенно на больших высотах. Это способствует приспособлению организма к условиям пониженного парциального давления кислорода и уменьшению вероятности гипоксии за счёт увеличения кровотока как в лёгких, так и в периферических тканях. Известные эффекты окиси азота включают в себя не только вазодилатацию, но и участие в нейротрансмиссии в качестве газотрансмиттера, и активацию роста волос,[9] и образование реактивных промежуточных продуктов обмена, и участие в процессе эрекции пениса (благодаря способности окиси азота расширять сосуды полового члена). Фармакологически активные нитраты, такие, как нитроглицерин, амилнитрит, нитропруссид натрия, реализуют своё вазодилатирующее, антиангинальное (антиишемическое), гипотензивное и спазмолитическое действие благодаря тому, что из них в организме образуется окись азота. Вазодилатирующее гипотензивное лекарство миноксидил содержит остаток NO и может работать, кроме всего прочего, ещё и как агонист NO. Аналогично, силденафил и подобные ему препараты способствуют улучшению эрекции преимущественно за счёт того, что усиливают работу связанного с NO сигнального каскада в половом члене.

Окись азота способствует поддержанию гомеостаза сосудов, вызывая расслабление гладких мышц стенок сосудов и угнетая их рост и утолщение интимы сосудов (гипертензивное ремоделирование сосудов), а также угнетая адгезию и агрегацию тромбоцитов и адгезию лейкоцитов к эндотелию сосудов. У больных с атеросклерозом сосудов, сахарным диабетом или гипертензией часто имеются признаки нарушения обмена оксида азота или нарушения во внутриклеточных каскадах передачи сигнала от оксида азота.[10]

Было также показано, что высокое потребление соли снижает образование окиси азота у больных с гипертонической болезнью, хотя биодоступность окиси азота не меняется, остаётся прежней.[11]

Окись азота также образуется в процессе фагоцитоза такими способными к фагоцитозу клетками, как моноциты, макрофаги, нейтрофилы, как часть иммунного ответа на вторжение чужеродных микроорганизмов (бактерий, грибков и др.).[12] Клетки, способные к фагоцитозу, содержат индуцируемую синтазу оксида азота (iNOS), которая активируется γ-интерфероном или сочетанием фактора некроза опухоли со вторым сигналом воспаления.[13][14][15] С другой стороны, β-трансформирующий фактор роста (TGF-β) оказывает сильное угнетающее действие на активность iNOS и биосинтез оксида азота фагоцитами. Интерлейкины 4 и 10 оказывают слабое угнетающее действие на активность iNOS и биосинтез оксида азота соответствующими клетками. Таким образом, иммунная система организма обладает способностью регулировать активность iNOS и доступный фагоцитам арсенал средств иммунного ответа, что играет роль в регуляции процессов воспаления и силы иммунных реакций.[16] Оксид азота секретируется фагоцитами в процессе иммунного ответа в качестве одного из свободных радикалов и является высокотоксичным для бактерий и внутриклеточных паразитов, включая лейшманий[17] и малярийных плазмодиев.[18][19][20] Механизм бактерицидного, противогрибкового и антипротозойного действия оксида азота включает в себя повреждение ДНК бактерий, грибков и простейших[21][22][23] и повреждение железосодержащих белков с разрушением комплексов железа с серой и образованием нитрозилов железа.[24]

В ответ на это многие патогенные бактерии, грибки и простейшие эволюционно развили механизмы устойчивости к образующемуся в процессе фагоцитоза оксиду азота или механизмы его быстрого обезвреживания.[25] Поскольку повышение образования эндогенного оксида азота является одним из маркеров воспаления и поскольку эндогенный оксид азота может оказывать провоспалительное действие при таких состояниях, как бронхиальная астма и бронхообструктивные заболевания, в практической медицине наблюдается повышенный интерес к возможному использованию анализа на содержание оксида азота в выдыхаемом воздухе в качестве простого дыхательного теста при заболеваниях дыхательных путей, сопровождающихся их воспалением. Пониженные уровни эндогенного оксида азота в выдыхаемом воздухе были обнаружены у курильщиков и у велосипедистов, подвергающихся воздействию загрязнения воздуха. В то же время в других популяциях (то есть не среди велосипедистов) с воздействием загрязнения воздуха ассоциировалось повышение уровня эндогенного оксида азота в выдыхаемом воздухе.[26]

Эндогенный оксид азота может привносить свой вклад в повреждение тканей при ишемии и последующей реперфузии, поскольку в процессе реперфузии может образовываться избыточное количество оксида азота, который может реагировать с супероксидом или пероксидом водорода и образовывать сильный и токсичный окислитель, повреждающий ткани — пероксинитрит. Напротив, при отравлении паракватом вдыхание оксида азота способствует повышению выживаемости и лучшему восстановлению больных, поскольку паракват вызывает образование в лёгких больших количеств супероксида и пероксида водорода, снижение биодоступности NO вследствие его связывания с супероксидом и образования пероксинитрита и угнетение активности синтазы оксида азота.

У растений эндогенный оксид азота может производиться одним из четырёх способов:

  1. При помощи аргинин-зависимой синтазы оксида азота;[27][28][29] (хотя существование у растений прямых гомологов синтазы оксида азота животных всё ещё является предметом дискуссий и признаётся не всеми специалистами),[30]
  2. При помощи находящейся в плазматической мембране растительных клеток нитрат-редуктазы, восстанавливающей усваиваемые из почвы нитраты и нитриты;
  3. При помощи электронного транспорта, происходящего в митохондриях;
  4. При помощи неферментативного окисления аммиака или неферментативного восстановления нитратов и нитритов.

У растений эндогенный оксид азота также является сигнальной молекулой (газотрансмиттером), способствует снижению или предотвращению оксидативного стресса клеток, а также играет роль в защите растений от патогенных микроорганизмов и грибков. Было показано, что воздействие низких концентраций экзогенного оксида азота на срезанные цветы и другие растения увеличивает продолжительность времени до их увядания, пожелтения и осыпания листьев и лепестков.[31]

Два важнейших механизма, при помощи которых эндогенный оксид азота проявляет своё биологическое действие на клетки, органы и ткани — это S-нитрозилирование тиоловых соединений (включая тиоловые группы серосодержащих аминокислот, таких, как цистеин) и нитрозилирование ионов переходных металлов. S-нитрозилирование означает обратимое преобразование тиоловых групп (например, цистеиновых остатков в составе молекул белков) в S-нитрозотиолы (RSNO). S-нитрозилирование является важным механизмом динамической, обратимой посттрансляционной модификации и регуляции функций многих, если не всех, основных классов белков.[32] Нитрозилирование ионов переходных металлов подразумевает связывание NO с ионом переходного металла, такого, как железо, медь, цинк, хром, кобальт, марганец, в том числе с ионами переходных металлов в составе простетических групп или активных каталитических центров металлоферментов. В этой роли NO является нитрозильным лигандом. Типичные случаи нитрозилирования ионов переходных металлов включают в себя нитрозилирование гем-содержащих белков, таких, как цитохром, гемоглобин, миоглобин, что приводит к нарушению функции белка (в частности, невозможности гемоглобина выполнять свою транспортную функцию, или инактивации фермента). Особенно важную роль играет нитрозилирование двухвалентного железа, поскольку связывание нитрозильного лиганда с ионом двухвалентного железа особенно сильное и приводит к образованию очень прочной связи. Гемоглобин является важным примером белка, функция которого может изменяться под влиянием NO обоими способами: NO может как непосредственно связываться с железом в составе гема в реакции нитрозилирования, так и образовывать S-нитрозотиолы при S-нитрозилировании серосодержащих аминокислот в составе гемоглобина.[33]

Таким образом, существует несколько механизмов, при помощи которых эндогенный оксид азота оказывает влияние на биологические процессы в живых организмах, клетках и тканях. Эти механизмы включают окислительное нитрозилирование железосодержащих и других металлосодержащих белков, таких, как рибонуклеотид-редуктаза, аконитаза, активацию растворимой гуанилатциклазы с повышением образования цГМФ, стимуляцию АДФ-зависимого рибозилирования белков, S-нитрозилирование сульфгидрильных (тиоловых) групп белков, приводящее к их посттрансляционной модификации (активации либо инактивации), активацию регулируемых факторов транспорта железа, меди и других переходных металлов.[34] Было также показано, что эндогенный оксид азота способен активировать ядерный фактор транскрипции каппа (NF-κB) в мононуклеарных клетках периферической крови. А известно, что NF-κB является важным фактором транскрипции в регуляции процессов апоптоза и воспаления, и в частности важным фактором транскрипции в процессе индукции экспрессии гена индуцируемой синтазы оксида азота. Таким образом, продукция эндогенного оксида азота саморегулируется — повышение уровня NO угнетает дальнейшую экспрессию индуцируемой синтазы оксида азота и предотвращает чрезмерное повышение её уровня и чрезмерное повреждение тканей организма хозяина в процессе воспаления и иммунного ответа.[35]

Известно также, что вазодилатирующее действие оксида азота опосредуется в основном через стимуляцию им активности растворимой гуанилатциклазы, являющейся гетеродимерным ферментом, активирующимся при нитрозилировании. Стимуляция активности гуанилатциклазы приводит к накоплению циклического ГМФ. Увеличение концентрации в клетке циклического ГМФ приводит к повышению активности протеинкиназы G. Протеинкиназа G, в свою очередь, фосфорилирует ряд важных внутриклеточных белков, что приводит к обратному захвату ионов кальция из цитоплазмы во внутриклеточные хранилища и к открытию активируемых кальцием калиевых каналов. Снижение концентрации ионов кальция в цитоплазме клетки приводит к тому, что киназа лёгкой цепи миозина, активируемая кальцием, теряет активность и не может фосфорилировать миозин, что приводит к нарушению образования в молекуле миозина «мостиков» и нарушению его свёртывания в более компактную структуру (сокращения), а следовательно и к расслаблению гладкомышечной клетки. А расслабление гладкомышечных клеток стенок сосудов ведёт к расширению сосудов (вазодилатации) и увеличению кровотока.[36]

Применение[править | править вики-текст]

Получение NO является одной из стадий получения азотной кислоты.

См. также[править | править вики-текст]


Оксиды азота
Оксид азота(I) Оксид азота(I) (N2O) Оксид азота(II) Оксид азота(II) (NO)
Оксид азота(III) Оксид азота(III) (N2O3) Оксид азота(IV) Оксид азота(IV) (NO2) Оксид азота(V) Оксид азота(V) (N2O5)


Примечания[править | править вики-текст]

  1. Weller, Richard, Could the sun be good for your heart? TedxGlasgow. Filmed March 2012, posted January 2013
  2. Roszer, T (2012) The Biology of Subcellular Nitric Oxide. ISBN 978-94-007-2818-9
  3. Stryer Lubert. Biochemistry, 4th Edition. — W.H. Freeman and Company, 1995. — P. 732. — ISBN 0-7167-2009-4.
  4. Plant-based Diets | Plant-based Foods | Beetroot Juice | Nitric Oxide Vegetables. Berkeley Test. Проверено 4 октября 2013.
  5. (2013) «Enhanced Vasodilator Activity of Nitrite in Hypertension: Critical Role for Erythrocytic Xanthine Oxidoreductase and Translational Potential». Hypertension 61 (5): 1091–102. DOI:10.1161/HYPERTENSIONAHA.111.00933. PMID 23589565.
  6. (2008) «Acute Blood Pressure Lowering, Vasoprotective, and Antiplatelet Properties of Dietary Nitrate via Bioconversion to Nitrite». Hypertension 51 (3): 784–90. DOI:10.1161/HYPERTENSIONAHA.107.103523. PMID 18250365.
  7. (2013) «The oral microbiome and nitric oxide homoeostasis». Oral Diseases: n/a. DOI:10.1111/odi.12157.
  8. Green, Shawn J. Turning DASH Strategy into Reality for Improved Cardio Wellness Outcomes: Part II. Real World Health Care (25 июля 2013). Проверено 4 октября 2013.
  9. (August 1989) «Endothelium-Derived Relaxing Factor and Minoxidil: Active Mechanisms in Hair Growth». Archives in Dermatology 125 (8): 1146. DOI:10.1001/archderm.1989.01670200122026. PMID 2757417.
  10. Dessy, C. (2004). «Pathophysiological Roles of Nitric Oxide: In the Heart and the Coronary Vasculature». Current Medical Chemistry – Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry 3 (3): 207–216. DOI:10.2174/1568014043355348.
  11. (2002) «Relationship between salt intake, nitric oxide, and asymmetric dimethylarginine and its relevance to patients with end-stage renal disease». Blood purification 20 (5): 466–8. DOI:10.1159/000063555. PMID 12207094.
  12. (1990) «Cellular mechanisms of nonspecific immunity to intracellular infection: Cytokine-induced synthesis of toxic nitrogen oxides from L-arginine by macrophages and hepatocytes». Immunology letters 25 (1–3): 15–9. DOI:10.1016/0165-2478(90)90083-3. PMID 2126524.
  13. Gorczyniski and Stanely, Clinical Immunology. Landes Bioscience; Austin, TX. ISBN 1-57059-625-5
  14. (1993) «Neutralization of gamma interferon and tumor necrosis factor alpha blocks in vivo synthesis of nitrogen oxides from L-arginine and protection against Francisella tularensis infection in Mycobacterium bovis BCG-treated mice». Infection and immunity 61 (2): 689–98. PMID 8423095.
  15. (1995) «Generation of nitric oxide and clearance of interferon-gamma after BCG infection are impaired in mice that lack the interferon-gamma receptor». Journal of inflammation 46 (1): 23–31. PMID 8832969.
  16. (1994) «Nitric oxide: Cytokine-regulation of nitric oxide in host resistance to intracellular pathogens». Immunology letters 43 (1–2): 87–94. DOI:10.1016/0165-2478(94)00158-8. PMID 7537721.
  17. (1990) «Leishmania major amastigotes initiate the L-arginine-dependent killing mechanism in IFN-gamma-stimulated macrophages by induction of tumor necrosis factor-alpha». Journal of immunology 145 (12): 4290–7. PMID 2124240.
  18. (1994) «Induction of nitric oxide synthase protects against malaria in mice exposed to irradiated Plasmodium berghei infected mosquitoes: Involvement of interferon gamma and CD8+ T cells». Journal of Experimental Medicine 180 (1): 353–8. DOI:10.1084/jem.180.1.353. PMID 7516412.
  19. (1991) «IFN-gamma inhibits development of Plasmodium berghei exoerythrocytic stages in hepatocytes by an L-arginine-dependent effector mechanism». Journal of immunology 146 (11): 3971–6. PMID 1903415.
  20. (1995) «Co-localization of inducible-nitric oxide synthase and Plasmodium berghei in hepatocytes from rats immunized with irradiated sporozoites». Journal of immunology 154 (7): 3391–5. PMID 7534796.
  21. (1991) «DNA deaminating ability and genotoxicity of nitric oxide and its progenitors». Science 254 (5034): 1001–3. DOI:10.1126/science.1948068. PMID 1948068.
  22. (1992) «DNA Damage and Mutation in Human Cells Exposed to Nitric Oxide in vitro». Proceedings of the National Academy of Sciences 89 (7): 3030. DOI:10.1073/pnas.89.7.3030. Free text.
  23. (2006) «Threshold Effects of Nitric Oxide-Induced Toxicity and Cellular Responses in Wild-Type and p53-Null Human Lymphoblastoid Cells». Chemical Research in Toxicology 19 (3): 399–406. DOI:10.1021/tx050283e. PMID 16544944. free text
  24. (1988) «Nitric oxide: A cytotoxic activated macrophage effector molecule». Biochemical and Biophysical Research Communications 157 (1): 87–94. DOI:10.1016/S0006-291X(88)80015-9. PMID 3196352.
  25. Janeway, C. A. Immunobiology: the immune system in health and disease. — 6th. — New York: Garland Science, 2005. — ISBN 0-8153-4101-6.
  26. (2010) «Subclinical responses in healthy cyclists briefly exposed to traffic-related air pollution: An intervention study». Environmental Health 9: 64. DOI:10.1186/1476-069X-9-64. PMID 20973949.
  27. Corpas, F. J. (2004). «Cellular and subcellular localization of endogenous nitric oxide in young and senescent pea plants». Plant Physiology 136 (1): 2722–33. DOI:10.1104/pp.104.042812. PMID 15347796.
  28. Corpas, F. J. (2006). «Constitutive arginine-dependent nitric oxide synthase activity in different organs of pea seedlings during plant development». Planta 224 (2): 246–54. DOI:10.1007/s00425-005-0205-9. PMID 16397797.
  29. Valderrama, R. (2007). «Nitrosative stress in plants». FEBS Lett 581 (3): 453–61. DOI:10.1016/j.febslet.2007.01.006. PMID 17240373.
  30. Corpas, F. J. (2004). «Enzymatic sources of nitric oxide in plant cells – beyond one protein–one function». New Phytologist 162 (2): 246–7. DOI:10.1111/j.1469-8137.2004.01058.x.
  31. Siegel-Itzkovich J. Viagra makes flowers stand up straight // BMJ. — 1999. — Vol. 319. — P. 274-274. — ISSN 0959-8138. — DOI:10.1136/bmj.319.7205.274a исправить
  32. van Faassen, E. and Vanin, A. (eds.) (2007) Radicals for life: The various forms of nitric oxide. Elsevier, Amsterdam, ISBN 978-0-444-52236-8
  33. van Faassen, E. and Vanin, A. (2004) «Nitric Oxide», in Encyclopedia of Analytical Science, 2nd ed., Elsevier, ISBN 0-12-764100-9.
  34. (1995) «Nitric oxide modulation of the growth and differentiation of freshly isolated acute non-lymphocytic leukemia cells». Leukemia research 19 (8): 527–33. DOI:10.1016/0145-2126(95)00013-E. PMID 7658698.
  35. Kaibori M., Sakitani K., Oda M., Kamiyama Y., Masu Y. and Okumura T. (1999). «Immunosuppressant FK506 inhibits inducible nitric oxide synthase gene expression at a step of NF-κB activation in rat hepatocytes». J. Hepatol. 30 (6): 1138–1145. DOI:10.1016/S0168-8278(99)80270-0. PMID 10406194.
  36. Medical physiology 2nd edition. — 2003.