Открытые проблемы в теории чисел

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Теория чисел — это раздел математики, занимающийся преимущественно изучением натуральных и целых чисел и их свойств, часто с привлечением методов математического анализа и других разделов математики. Теория чисел содержит множество проблем, попытки решения которых предпринимались математиками в течение десятков, а иногда даже сотен лет, но которые пока так и остаются открытыми. Ниже приведены некоторые из наиболее известных нерешённых проблем.

Гипотезы о простых числах[править | править код]

  • Сильная проблема Гольдбаха. Каждое чётное число, большее 2, можно представить в виде суммы двух простых чисел.
  • Проблема Ризеля: поиск такого минимального нечётного , что число является составным для всех натуральных .
  • Проблема Серпинского: поиск такого минимального нечётного натурального , что число является составным для всех натуральных .
  • Гипотеза Артина о бесконечности множества простых чисел, по модулю которых заданное целое число является первообразным корнем.
  • Гипотеза Лежандра. Для любого натурального между и найдётся хотя бы одно простое число.
  • Гипотеза Брокарда. Для любого натурального между и (где  — это -ое простое число) найдётся хотя бы четыре простых числа.
  • Гипотеза Полиньяка. Для любого чётного числа найдётся бесконечно много пар соседних простых чисел, разность между которыми равна .
  • Верно ли, что для любого положительного иррационального числа и любого положительного существует бесконечное количество пар простых чисел для которых выполняется неравенство ?[1]
  • Сходится ли ряд ?[2]
  • Гипотеза Гильбрайта. Для любого натурального числа последовательность абсолютных разностей -го порядка для последовательности простых чисел начинается с 1. Абсолютные разности 1-го порядка — это абсолютные величины разностей между соседними простыми числами: разности 2-го порядка — это абсолютные величины разностей между соседними элементами в последовательности абсолютных разностей 1-го порядка: и т. д. Гипотеза проверена для всех n < 3×1011[3]
  • Гипотеза Буняковского Если  — целозначный неприводимый многочлен и d — наибольший общий делитель всех его значений, то целозначный многочлен принимает бесконечно много простых значений. 4-я проблема Ландау — частный случай этой гипотезы при .
  • Гипотеза Диксона Если  — конечное число арифметических прогрессий, то существует бесконечно много натуральных чисел n таких, что для каждого такого n все r чисел являются простыми одновременно. Причём из рассмотрения исключается тривиальный случай, когда существует такое простое p, что при любом n хотя бы одно число кратно p.
  • Имеются ли простые числа Вольстенхольма, отличные от 16 843 и 2 124 679?
  • Открытым является вопрос бесконечности количества простых чисел в каждой из следующих последовательностей[4]:
Последовательность Название
числа Мерсенна
4-я проблема Ландау
Невозможно разобрать выражение (Ошибка преобразования. Сервер («https://wikimedia.org/api/rest_») сообщил: «Cannot get mml. TeX parse error: Double exponent: use braces to clarify»): {\displaystyle n^{2}^{k}+1} , обобщение проблема Ландау[5].
числа Каллена
числа Вудала
числа Ферма
числа Фибоначчи
пары простые близнецы
пары простые числа Софи Жермен
факториальные числа
праймориальные числа
,  — нечетно, числа Прота
  • Существует ли многочлен , кроме линейного, среди значений которого существует бесконечно много простых чисел?[6]
  • Почему простые числа располагаются в цепочки вдоль диагоналей скатерти Улама?[6]

Гипотезы о совершенных числах[править | править код]

Гипотезы о дружественных числах[править | править код]

Гауссовы числа[править | править код]

  • Найти количество гауссовых чисел, норма которых меньше заданной натуральной константы . В эквивалентной формулировке эта тема известна как «проблема круга Гаусса» в геометрии чисел[8]. См. последовательность A000328 в OEIS.
  • Найти прямые на комплексной плоскости, содержащие бесконечно много простых гауссовых чисел. Две такие прямые очевидны — это координатные оси; неизвестно, существуют ли другие[9].
  • Вопрос, известный под названием «ров Гаусса[en]»: можно ли дойти до бесконечности, переходя от одного простого гауссова числа к другому скачками заранее ограниченной длины? Задача поставлена в 1962 году и до сих пор не решена[10].

Диофантовы уравнения[править | править код]

  • Каждое ли перечислимое множество имеет однократное диофантово представление?[11]
  • Может ли не иметь однократного диофантова представления объединение двух множеств, каждое из которых имеет однократное диофантово представление?
  • Каждое ли перечислимое множество имеет диофантово представление в виде уравнения степени 3 относительно всех переменных (параметров и неизвестных)?
  • Каждое ли перечислимое множество имеет диофантово представление в виде уравнения степени 3 относительно неизвестных?
  • Какое наименьшее число переменных может иметь универсальное диофантово уравнение? Какую наименьшую степень оно может иметь при таком числе переменных? Наименьший известный результат — 9 переменных. Наименьшая известная степень уравнения при 9 переменных превышает [12]
  • Какое наименьшее число переменных может иметь универсальное диофантово уравнение степени 4? Наименьший известный результат составляет 58.
  • Существует ли универсальное диофантово уравнение степени 3? Если да, то какое наименьшее число переменных оно может иметь?
  • Какое наименьшее количество операций (сложений, вычитаний и умножений) может иметь универсальное диофантово уравнение? Наименьший известный результат составляет 100.
  • Бесконечно ли множество решений диофантова уравнения ?[11]
  • Существование прямоугольного параллелепипеда с тремя целочисленными рёбрами и целочисленными диагоналями.
  • Существование множества из пяти положительных целых чисел, произведение любых двух из которых на единицу меньше точного квадрата.

Многие нерешённые проблемы (например, проблема Гольдбаха или гипотеза Римана) могут быть переформулированы как вопросы о разрешимости диофантовых уравнений 4-й степени некоторого специального вида, однако такая переформулировка обычно не делает проблему проще ввиду отсутствия общего метода решения диофантовых уравнений[13][11].

Аналитическая теория чисел[править | править код]

  • Гипотеза Римана (теоретико-числовая формулировка). Верна ли следующая асимптотическая формула для распределения простых чисел:
  • Известно, что количество точек с положительными целочисленными координатами в области, ограниченной гиперболой и положительными полуосями, выражается асимптотической формулой
где  — количество делителей числа k,  — постоянная Эйлера — Маскерони, а может быть выбрано равным Однако, неизвестно, при каком наименьшем значении эта формула останется верной (известно, что оно не меньше, чем )[14][15][16].
  • Гипотеза Крамера о пробелах между простыми числами: .
  • Ослабленная гипотеза Мертенса: доказать, что функция Мертенса оценивается как . Ослабленная гипотеза Мертенса эквивалентна гипотезе Римана.
  • Первая гипотеза Харди — Литлвуда — гипотеза о плотности распределения кортежей простых чисел вида , утверждающая, в частности, что число таких кортежей бесконечно, исключая тривиальные случаи. Эта гипотеза является уточнением гипотезы о простых близнецах, а также является частным случаем гипотезы Диксона.
  • Вторая гипотеза Харди — Литлвуда — гипотеза о логарифмическом свойстве функции числа простых чисел: .
  • Гипотеза Сингмастера. Обозначим через количество раз, которое натуральное число , большее единицы, встречается в треугольнике Паскаля. Сингмастер показал, что , что в дальнейшем было улучшено до . Верно ли более сильное утверждение ?
  • Гипотеза Зарембы (англ.). Для любого натурального числа q найдётся такое число p, что в разложении в цепную дробь все неполные частные не превосходят пяти. В 2011 году Жаном Бургейном и Алексом Конторовичем было доказано, что для дробей с неполными частными, ограниченными 50, гипотеза верна на множестве плотностью 1[17].

Теория Рамсея[править | править код]

  • Значения чисел Рамсея [18]. Точно известны только несколько первых чисел. Например, неизвестно, при каком наименьшем N в любой группе из N человек найдутся 5 человек, попарно знакомых друг с другом, или 5 человек, попарно незнакомых друг с другом — это число обозначается , про него известно только, что .
1 2 3 4 5 6 7 8 9 10
1 1 1 1 1 1 1 1 1 1 1
2 1 2 3 4 5 6 7 8 9 10
3 1 3 6 9 14 18 23 28 36 [40, 42]
4 1 4 9 18 25 [36, 41] [49, 61] [59, 84] [73, 115] [92, 149]
5 1 5 14 25 [43, 48] [58, 87] [80, 143] [101, 216] [133, 316] [149, 442]
6 1 6 18 [36, 41] [58, 87] [102, 165] [115, 298] [134, 495] [183, 780] [204, 1171]
7 1 7 23 [49, 61] [80, 143] [115, 298] [205, 540] [217, 1031] [252, 1713] [292, 2826]
8 1 8 28 [56, 84] [101, 216] [127, 495] [217, 1031] [282, 1870] [329, 3583] [343, 6090]
9 1 9 36 [73, 115] [133, 316] [183, 780] [252, 1713] [329, 3583] [565, 6588] [580, 12677]
10 1 10 [40, 42] [92, 149] [149, 442] [179, 1171] [289, 2826] [343, 6090] [581, 12677] [798, 23556]
  • Значения чисел ван дер Вардена[en]. На данный момент известны значения только 6 первых чисел[19]: 1, 3, 9, 35, 178 и 1132. Например, неизвестно, при каком наименьшем N при любом разбиении множества на два подмножества хотя бы одно из них будет содержать арифметическую прогрессию длиной 7 (известно, что , где выражение для верхней границы использует тетрацию)[20].

Другие проблемы[править | править код]

  • Пусть  — положительное число такое, что и  — целые числа. Может ли не быть целым числом?
  • Существование слегка избыточных чисел.
  • Существование цикла из трёх компанейских чисел.
  • Существуют ли попарно различные натуральные числа такие, что ?[21]
  • Существуют ли две различные пифагоровы тройки, имеющие одинаковое произведение?[22]
  • Гипотеза Била. Если где  — натуральные и , то имеют общий простой делитель.
  • Гипотеза Эрдёша. Если сумма обратных величин для некоторого множества натуральных чисел расходится, то в этом множестве можно найти сколь угодно длинную арифметическую прогрессию.
  • Насколько велика может быть сумма обратных величин последовательности натуральных чисел, в которой никакой элемент не равен сумме нескольких других различных элементов? (Эрдёш)[23]
  • Гипотеза Коллатца (гипотеза 3n+1).
  • Гипотеза жонглёра. Любая последовательность жонглёра достигает 1[24]. Последовательность жонглёра описывается рекурсивной формулой:
  • Задача Брокара. Имеет ли уравнение решения в натуральных числах, кроме (4, 5), (5, 11) и (7, 71)?[25]
  • Гипотеза Томашевски. Только числа 1, 6 и 120 являются одновременно треугольными и факториалами[26]. В альтернативной формулировке сводится к решению уравнения в натуральных числах.
  • Конечно ли множество решений уравнения В настоящее время известно только 5 решений[27].[28][29]
  • Верно ли утверждение, что квадрат всякого рационального числа представим в виде суммы четвёртых степеней четырёх рациональных чисел?
  • Проблема Варинга и её обобщения:
    • Конечно ли множество натуральных чисел, которые нельзя представить в виде суммы 6 кубов неотрицательных целых чисел?[30] Аналогичный вопрос стоит для сумм 5 и 4 кубов, а также для многих чисел слагаемых со степенями выше 4.
    • С какой точностью натуральное число можно представить суммой квадратов двух целых чисел?
  • Проблема 196. Существуют ли такие натуральные числа, которые в результате повторения операции «перевернуть и сложить», никогда не превратятся в палиндром?
  • Существует ли параллелепипед Эйлера (параллелепипед со всеми целочисленными диагоналями), пространственная диагональ которого также имеет целую длину?[31]

См. также[править | править код]

Примечания[править | править код]

  1. Mathematical developments arising from Hilbert problems, стр. 39
  2. Weisstein, Eric W. Prime Sums (англ.) на сайте Wolfram MathWorld.
  3. Weisstein, Eric W. Гипотеза Гильбрайта (англ.) на сайте Wolfram MathWorld.
  4. Weisstein, Eric W. Integer Sequence Primes (англ.) на сайте Wolfram MathWorld.
  5. Стюарт, 2015, с. 68.
  6. 1 2 Матиясевич, Ю. В. Формулы для простых чисел // Квант. — 1975. — Т. 1. — № 5. — С. 8.
  7. Стюарт, 2015, с. 404.
  8. Conway J. H., Sloane N. J. A. Sphere Packings, Lattices and Groups. — Springer-Verlag. — P. 106.
  9. Ribenboim, Paulo. The New Book of Prime Number Records, Ch.III.4.D Ch. 6.II, Ch. 6.IV. — 3rd ed. — New York: Springer, 1996. — ISBN 0-387-94457-5.
  10. Guy Richard K. Unsolved problems in number theory. — 3rd ed. — New York: Springer, 2004. — P. 55—57. — ISBN 978-0-387-20860-2.
  11. 1 2 3 Ю. В. Матиясевич. Упражнение 2.10 // Десятая проблема Гильберта. — М.: Наука, 1993. — 223 с. — (Математическая логика и основания математики; выпуск № 26). — ISBN 502014326X.
  12. Jones J. P. (1980). «Undecidable diophantine equations». Bull. Amer. Math. Soc. 3: 859-862. DOI:10.1090/S0273-0979-1980-14832-6.
  13. Yuri Matiyasevich, Hilbert’s Tenth Problem: What was done and what is to be done
  14. А. А. Бухштаб. Теория чисел. — М.: Просвещение, 1966.
  15. Аналитическая теория чисел
  16. Weisstein, Eric W. Dirichlet Divisor Problem (англ.) на сайте Wolfram MathWorld.
  17. J. Bourgain, A. Kontorovich. On Zaremba’s Conjecture.
  18. Stanisław Radziszowski Small Ramsey Numbers (англ.) // The Electronic Journal of Combinatorics. — 2017. — 3 March. — ISSN 1077-8926. (revision 15)
  19. Последовательность A005346 в OEIS
  20. Weisstein, Eric W. Число ван дер Вардена (англ.) на сайте Wolfram MathWorld.
  21. Unsolved Problem 18: Are there distinct positive integers, a, b, c, and, d such that a^5+b^5=c^5+d^5? Unsolved Problem of the Week. MathPro Press.
  22. Weisstein, Eric W. Пифагорова тройка (англ.) на сайте Wolfram MathWorld.
  23. Weisstein, Eric W. A-Sequence (англ.) на сайте Wolfram MathWorld.
  24. Последовательности A007320, A094716 в OEIS
  25. Weisstein, Eric W. Проблема Брокарда (англ.) на сайте Wolfram MathWorld.
  26. Последовательности A000142, A000217 в OEIS
  27. Weisstein, Eric W. Число 2 (англ.) на сайте Wolfram MathWorld.
  28. 2^n mod n - OeisWiki
  29. https://web.archive.org/web/20120104074313/http://www.immortaltheory.com/NumberTheory/2nmodn.htm
  30. Weisstein, Eric W. Cubic Number (англ.) на сайте Wolfram MathWorld.
  31. Стюарт, 2015, с. 406.

Литература[править | править код]

Ссылки[править | править код]